Затем Риман записал эти уравнения для пространств с произвольным количеством измерений. Эти пространства могут быть либо плоскими, либо искривленными. К плоским применяются обычные аксиомы Евклида: кратчайшее расстояние между двумя точками – прямая, параллельные линии никогда не пересекаются, сумма внутренних углов треугольника составляет 180º. Вместе с тем Риман обнаружил, что поверхности могут иметь «положительную кривизну», как поверхность сферы, где параллельные всегда пересекаются и сумма углов треугольника может быть больше 180º. Бывают и поверхности с «отрицательной кривизной»: например, седлообразные или воронкообразные. На этих поверхностях сумма углов треугольника меньше 180º. Если взять линию и точку вне этой линии, то через такую точку можно провести бесконечное множество линий, параллельных данной (рис. 2.2).
Целью Римана было ввести в математику новый элемент, позволяющий описывать все поверхности независимо от их сложности. Как и следовало ожидать, эта цель побудила его обратиться к фарадеевой концепции поля.
Как мы помним, поле Фарадея представляло собой подобие крестьянского, занимающего двумерный участок пространства. Фарадеево поле занимает часть трехмерного пространства; любой точке этого пространства мы присваиваем ряд параметров, описывающих магнитное или электрическое взаимодействие в этой точке. Идея Римана заключалась в том, чтобы присвоить каждой точке пространства ряд параметров, которые описывали бы степень его деформации или кривизны.
К примеру, для обычной двумерной поверхности Риман вводил набор из трех параметров для каждой точки, полностью описывающих искривление этой поверхности. Риман обнаружил, что в четырех пространственных измерениях для описания свойств каждой точки требуется набор из десяти параметров. Каким бы «скомканным» или искривленным ни было пространство, этих десяти параметров для каждой точки оказывалось достаточно, чтобы зашифровать всю информацию о данном пространстве. Обозначим эти десять параметров как
Метрический тензор позволил Риману построить эффективный аппарат для описания пространств с любым количеством измерений и произвольной кривизной. К своему изумлению, Риман обнаружил, что все эти пространства четко определены и логически последовательны. Ранее считалось, что при исследовании запретного мира высших измерений непреодолимые противоречия неизбежны. Но, как ни странно, Риман не заметил ни одного. Напротив, переход к
(Как мы убедимся, секрет объединения кроется в расширении метрического тензора Римана до
Риман предсказал еще одно направление развития физики: он первым заговорил о многосвязных пространствах, или «червоточинах». Для наглядного представления этой концепции возьмите два листа бумаги, положите один на другой. Сделайте ножницами короткий разрез на каждом листе. Потом склейте листы друг с другом вдоль разрезов (рис. 2.4). (Топологически получается то же самое, что и на рис. 1.1, только горловина «червоточины» имеет нулевую длину.)
Жучок, живущий на верхнем листе, может когда-нибудь случайно заползти в разрез и очутиться на нижнем листе. И озадачиться, так как все вокруг изменится. После многочисленных экспериментов жучок наверняка поймет, что можно вернуться в привычный мир, если проползти через разрез в обратном направлении. Стоит только сделать это – и мир станет обычным, но любые попытки пройти через разрез в надежде сократить путь чреваты проблемами.