Для объяснения, почему существуют три семейства частиц, используются, в частности, математические теоремы, накопленные математиками за прошедшее столетие. Как мы видели ранее, злополучная особенность теорий Великого объединения заключается в наличии трех идентичных семейств кварков и лептонов. Однако орбиобразие способно объяснить это сомнительное свойство теорий Великого объединения [109].
Вафа и его коллеги обнаружили для уравнений струн немало перспективных решений, которые выглядят соответствующими материальному миру. В сущности, при поразительно малом количестве допущений они могут заново вывести Стандартную модель — для теории это важный шаг. По сути дела, это и сильная, и слабая сторона теории суперструн. Вафа и его коллеги в каком-то смысле переусердствовали: нашли миллионы прочих возможных решений для струнных уравнений.
Основная проблема, с которой столкнулась теория суперструн, заключается в следующем:
Гросс предупреждает: хотя некоторые из этих решений очень близки к Стандартной модели, другие дают нежелательные физические свойства: «Несколько смущает то, что при обилии возможных решений у нас нет надежного способа делать выбор среди них. Вдобавок к многочисленным желательным свойствам эти решения имеют несколько потенциально катастрофических свойств» [111]. Непосвященный, услышав об этом впервые, наверняка озадачится и спросит: почему бы не произвести вычисления и не посмотреть, какое решение предпочтительно для струны? Поскольку теория струн четко определена, недоумение вызывает то, что физики не в состоянии вычислить ответ.
Проблема в том, что теория возмущений, один из главных инструментов в физике, в данном случае бесполезна. Теория возмущений (которая учитывает все более малые квантовые поправки) не в состоянии разложить десятимерную теорию на четыре и шесть измерений. Так что мы вынуждены пользоваться непертурбативными методами, печально известными своей сложностью в применении. По этой причине мы и не можем найти решение для теории струн. Как уже говорилось ранее, струнная теория поля, разработанная мной и Киккава и усовершенствованная Виттеном, в настоящее время несовместима с непертурбативными методами. Настолько умных не нашлось.
Однажды моим соседом был аспирант-историк. Помню, как-то раз он предостерег меня, сказав, что компьютерная революция в конце концов может лишить физиков работы: «Ведь компьютер может вычислить что угодно, верно?» С его точки зрения, это был лишь вопрос времени: математики заложат все вопросы физики в компьютер, и физики выстроятся в очередь на биржу труда.
Этим замечанием он огорошил меня, так как для физика компьютер — не что иное, как усовершенствованный арифмометр, безупречный и безмозглый. Недостаток интеллекта он возмещает скоростью. Надо заложить теорию в компьютер, прежде чем он сможет провести вычисления. Разрабатывать новые теории самостоятельно компьютер не в состоянии.
Мало того, даже если теория известна, компьютеру может потребоваться бесконечно долгое время для решения задачи. В сущности, вычисления, относящиеся к вопросам, которые представляют наибольшей интерес для физиков, занимают уйму компьютерного времени. В этом и заключается проблема с теорией струн. Хотя Вафа и его коллеги предложили миллионы возможных решений, понадобилось бы бесконечное количество времени, чтобы определить, какой из миллиона возможных вариантов верен, или же выполнить для квантовых задач вычисления, в которые входит замысловатый процесс туннелирования — один из квантовых феноменов, представляющих особую трудность при расчетах.
Туннелирование в пространстве и времени
В конечном счете мы задаемся тем же вопросом, что и Калуца в 1919 г., — куда девалось пятое измерение? — только на более высоком уровне. Как указывал Клейн в 1926 г., ответ на этот вопрос имеет отношение к квантовой теории. Туннелирование — возможно, самое поразительное (и сложное) явление в ней.