Читаем Геометрия, динамика, вселенная полностью

Приведенная цитата лаконично подытоживает (в определенном смысле) исследования центральных понятий геометрии. Основные ее понятия — идеализированные объекты, не обязательно связанные с конкретной реальностью или интуитивными представлениями. «Точкой» может быть идеализированный объект, лишенный протяженности во всех измерениях или в части измерений (линия или плоскость). Нулевые размеры точки не мешают ей обладать внутренней структурой и т. д.

Важны лишь отношения между геометрическими объектами, которые должны быть определены очень точно и непротиворечиво. Этот критерий и ограничивает произвол в выборе основных объектов. Подобную ситуацию можно назвать сверхабстракцией или сверхидеализацией. Количественная мера подобной идеализации не обязательна.

Здесь нужно особо подчеркнуть различие в отношении к термину «идеализация» со стороны математиков и физиков.

Идеализация — прием, типичный для математики. Иногда он даже не оговаривается. Однако идеализация — редкий гость в физических концепциях. И хотя этот термин иногда встречается в физических работах, он должен обязательно сопровождаться количественным критерием этой идеализации. Должен! Однако зачастую этот критерий не приводится. И тогда читатель подвергается искушению отнести подобную работу всего лишь к интересным математическим упражнениям. Иногда подобные работы сопровождаются солидными математическими узорами, однако подобное рукоделие не всегда поддается физической расшифровке.

Кардинальное расхождение в оценке термина «идеализация» со стороны физиков и математиков вполне закономерно. Оно обусловлено разницей в высших критериях «истины» этих дисциплин. Для математики важнейший критерий — логическая завершенность, для физики же — опыт. Обычно лишь экспериментальные исследования могут подтвердить или опровергнуть правильность физических построений. Разумеется, такая категоричность вывода не исключает более простую возможность: данная теория неверна вследствие противоречия с общепризнанными физическими принципами, логических неувязок, математических ошибок и т. д. Однако для новой, пусть самой красивой и формально безупречной теории высший критерий опыт. Поэтому физики предпочитают употреблять термин «приближение».

Полезно привести пример экспериментального выбора между двумя одинаково красивыми и логически безупречными теориями, объединяющими электромагнитное и слабое взаимодействия

[2]

На рубеже 60 — 70-х годов были предложены две альтернативные теории электрослабого взаимодействия. В рамках одного варианта теории оно осуществлялось посредством двух

+заряженных тяжелых частиц (W|| — бозонов). В соответствии с другой теорией, помимо заряженных частиц — переносчиков взаимодействия, должен был существовать также и тяжелый

0 +нейтральный Z| — бозон примерно с той же массой, что W|| — бозоны. Опыт: существование нейтральных токов (конкретно обнаружение рассеяния нейтрино на электронах) и, наконец, открытие на ускорителе нового поколения всех трех типов

± 0 частиц (W||- и Z| — бозонов) подтвердили правильность второго варианта теории электрослабого взаимодействия, который называется теорией Глешоу — Вайнберга — Салама. До названных экспериментов логический анализ не мог произвести выбор между двумя вариантами теории электрослабого взаимодействия.

Различие же высших критериев в обеих точных науках влечет за собой и расхождение в требованиях точности определения основных объектов, с которыми они оперируют.

Для краткости аргументами в пользу этого тезиса целесообразно опереться на авторитеты.

Л.Д.Ландау и Е.М.Лифшиц начинают свой курс теоретической физики с определения материальной точки. Под этим названием понимают тело, размерами которого можно пренебречь при описании его движения.

[3]

В этом определении центральное место занимает физический критерий реализации «точечности» объекта.

Вероятно, в физике следовало бы все-таки во избежание путаницы устранить термин «идеализация», заменив его на «приближение».

Р.Фейнман (на наш взгляд, абсолютно правильно) утверждал:

«Чтобы понять физические законы, вы должны усвоить себе раз и навсегда, что все они — в какой-то степени приближения».

Фейнман Р. и др. Фейнмановские лекции по физике. М.: Мир, 1965. Т.1. Современная наука о природе. Законы механики. с.211.

В физических книгах и работах обычно определяют некий малый параметр, которым при четко определенных условиях можно пренебречь. Как правило, приближение выражается в форме неравенства, когда безразмерная величина, определяющая приближение, становится малой сравнительно с единицей.

Приведем прекрасный пример приближенности теории. Классическая механика Ньютона верна, если выполняются два условия: v/c 1 и HP/S 1 (c — скорость света, v скорость тела, HP — постоянная Планка, S — действие).

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное