Законы природы — это не правила, контролирующие трансформацию из одного состояния в другое. Они лишь описывают существующие модели во всем их разнообразии. Наше обычное восприятие не позволяет представить общую картину, и тем более нам сложно понять, что время имеет особое значение. Ведь даже у физика есть воспоминания о прошлом и надежды на будущее, и никакая пространственно-временн
Философы, в чьей компетенции ранее находилось рассмотрение подобных вопросов, оперировали неизбежно устаревающим набором понятий. Их неспособность разобраться в проблеме проявлялась даже в том, какие наречия они использовали:
Осенью 1940 года Фейнман вернулся к рассмотрению фундаментальной проблемы, которая интересовала его еще в студенческие годы. Можно ли избежать появления опасных бесконечностей при решении уравнения квантовой теории, если исключить вероятность того, что электрон действует сам на себя, то есть, по сути, исключив само понятие поля? К сожалению, к тому времени он выяснил, что что-то с этой идеей не так. Проблема заключалась в том, что обнаружили явление, которое можно было объяснить, только предполагая, что электрон воздействует сам на себя. Когда воздействуют на реальные электроны, они оказывают противодействие: при ускорении электрона его энергия уменьшается за счет излучения.
На самом же деле электрон испытывает сопротивление, называемое радиационной стойкостью или сопротивлением излучению, и, чтобы его преодолеть, требовалось дополнительное усилие. В радиотрансляционной антенне, излучающей энергию в виде радиоволн, сопротивление излучения компенсируется с помощью тока, поступающего извне (по сути, это сопротивление есть коэффициент пропорциональности между квадратом протекающего в антенне тока и мощностью излучения). Сопротивление излучению мы наблюдаем, и когда раскаленные светящиеся предметы остывают. Именно поэтому одиночный электрон в атоме, находящемся в вакууме, теряет энергию, а потерянная им энергия излучается в виде света. Чтобы объяснить такое явление, физикам ничего не оставалось как предположить, что электрон оказывает воздействие сам на себя. Более того, это происходит, даже когда он находится в вакууме!
Однажды Фейнман появился в кабинете Уилера с новой идеей. Идея «нереальна», признался он, заметив, что до смерти устал от бесконечных попыток решить задачу, которую тот перед ним поставил, и поэтому решил действовать самостоятельно. Что будет, если допустить, что электрон в вакууме не излучает энергию, так же как дерево не шумит в пустом лесу? Что излучение возможно лишь в том случае, когда есть не только его источник, но и приемник? Фейнман представил вселенную, в которой имеется всего лишь два электрона: первый испытывает колебания, тем самым воздействуя на второй, в свою очередь, второй тоже начинает колебаться и воздействовать на первый. Он вычислил силу, с которой они воздействуют друг на друга, используя привычное уравнение поля Максвелла, но оказалось, что в такой вселенной с двумя частицами не должно быть никакого поля, если под полем понималась среда, в которой волны свободно распространяются.
Фейнман спросил Уилера: «Может ли такая сила, с которой один электрон воздействует на другой, а потом возвращается к первому, объяснить феномен сопротивления излучения?»
Уилеру идея понравилась. Это был тот самый подход, который позволял свести проблему к рассмотрению двух точечных зарядов и давал возможность попытаться выстроить теорию исходя из основных принципов. Но он сразу предвидел неверные результаты. Сила, с которой второй заряд будет действовать на первый, зависит от величины второго заряда, его массы и расстояния между зарядами (согласно закону Кулона). Но ни один из этих параметров не влияет на сопротивление излучения. Это замечание позже покажется Фейнману очевидным, но тогда его поразила проницательность преподавателя. Но была и еще одна проблема: Фейнман неверно объяснил задержку во времени при передаче силы от одной частицы к другой и обратно. Какое бы воздействие ни оказывалось на первую частицу, оно происходило бы слишком поздно, чтобы соответствовать во времени проявлению эффекта сопротивления излучения. Фактически Фейнман понял, что он просто описывал разные явления, одно из которых — обычное отражение света. Он почувствовал себя глупцом.