К концу 1960-х — началу 1970-х в лаборатории, расположившейся среди пологих холмов Северной Калифорнии недалеко от Стэнфордского университета, установили новый ускоритель. Он сыграл главную роль в экспериментах с сильным взаимодействием, которые и помогли обнаружить кварки. Трехкилометровая труба Стэндфордского центра линейного ускорителя[164] пролегла под травянистым ландшафтом. Наверху, на земле, на фоне пасущихся коров молодые физики в рубашках и джинсах — всего около ста человек — отдыхали за столами для пикников и сновали между многочисленными корпусами. А внизу, под землей, в прямой, как лезвие ножа, медной вакуумной трубе поток электронов устремлялся к протонной мишени. Здесь электроны достигали энергий гораздо больших, чем могли предположить ученые. Они поражали цель внутри конечной станции, сконструированной наподобие гигантского самолетного ангара, и затем, если повезет, входили в детектор, расположенный в бетонном блокгаузе (он был выложен свинцовыми кирпичами и передвигался по железнодорожным рельсам почти под самым потолком). В одних случаях результат фиксировали высокоскоростные кинокамеры, в других — группы ученых при помощи автоматического устройства, способного распознавать треки частиц на сотнях миллионов отснятых кадров (стандартное число снимков, получаемое в ходе эксперимента длиной в месяц). В одной пузырьковой камере, расположенной на конце луча, за пять с половиной лет ее службы обнаружилось семнадцать новых частиц.
С помощью ускорителя ученые исследовали сильное взаимодействие. (Эта сила получила такое название, поскольку на крайне малых расстояниях внутри ядра именно она противостояла электромагнитному отталкиванию и связывала протоны и нейтроны.) Подверженные ему частицы получили общее название
Он остановился у сестры. Джоан получила работу в исследовательской лаборатории и переехала в Стэнфорд. Ее дом находился через дорогу от Сэнд-Хилл-Роуд и Национальной лаборатории. Тем летом в патио Фейнманов часто собирались физики, чтобы послушать истории Ричарда; когда ему в голову приходила новая идея, он оглушительно громко хлопал в ладоши. Например, он говорил о «блинчиках», визуализируя частицы как лепешки с твердой начинкой.
Сотрудничество с Калтехом представлялось экспериментаторам из Стэнфордского центра очень важным, но к концу 1960-х в Калтехе правил Гелл-Манн, а не Фейнман. Методы Гелл-Манна — современная алгебра и математический каркас его теории кварков — привели к возникновению целой научной субкультуры; теоретики из Стэнфордского центра пытались применить его инструменты к малым расстояниям и более высоким энергиям. В центрах ускорителей вроде Стэнфордского теоретики изучали главным образом простейшие реакции — две частицы на входе, две на выходе, — хотя в результате большинства столкновений рождались многочисленные новые частицы. Экспериментаторы стремились получить максимально точные данные, но в этом хаосе какая-либо точность, казалось, была невозможна. Фейнман придерживался другой точки зрения. Он вывел формулу, при помощи которой можно было оценить рассеяние двадцати, пятидесяти и даже большего количества частиц. При этом импульс каждой частицы измерять не требовалось — нужно было лишь просуммировать все возможные варианты. Похожую теорию тогда развивал физик-теоретик из Стэнфорда Джеймс Бьоркен. Электрон «врезается» в протон и выходит с другой стороны вместе с «брызгами» не поддающихся измерению фрагментов. Единственным неизменным фактором в данном случае остается выходящий электрон. Бьоркен решил не рассчитывать величины всех многочисленных «брызг», а определить рассеяние и траекторию выходящих электронов — среднюю для многочисленных столкновений.