«Обязательные признаки научной работы: 1) совершенно непонятна, 2) отличается размытостью и неопределенностью, 3) содержит верные данные, которые и так известны, но сопровождаются длинным и сложным анализом, чтобы создавалось впечатление, будто ученый сделал важное открытие, 4) заключает в себе утверждение автора, основанное на его тупости, что некий очевидный и верный факт, который давно доказан и признан, на самом деле ошибочен (это хуже всего, потому что никакие аргументы не способны убедить идиота в обратном), 5) представляет собой попытку сделать нечто невозможное и определенно бесполезное, которая чуть позже будет признана неудачной или 6) ошибочной. И, естественно, “в нашей области ведутся активные исследования”, вся “активность” которых заключается в том, чтобы показать, к чему уже привела “активность” их предшественников (как правило, оказывается, что они заблуждались, не открыли ничего полезного либо сделали “перспективное” открытие)».
Научные сборища ему никогда не нравились. «Как будто черви пытаются выбраться из бутылки, заползая друг на друга».
Но, несмотря на недовольство Фейнмана, его выступление в Варшаве стало новой главой, положившей начало применению интегралов по траекториям в решении глубочайших космологических проблем. В конце 1950-х ни он сам, ни другие теоретики не использовали этот подход в физике высоких энергий. Лишь намного позже некоторые ученые применили интегралы по траекториям к самой структуре пространства и времени. Они стремились унифицировать пространственно-временн
Меньше малого
В то время казалось, что современная физическая наука совсем отошла от мира привычных масштабов. Исследования в области физики высоких энергий переместились в самый низ размерной шкалы, выйдя за пределы микромира в сферу невообразимо маленьких частиц с кратчайшим временем жизни. В ходу было слово «миниатюризация». Инженеры и производители тоже имели дело с мелкими масштабами, правда, не столь мелкими, как в физике частиц. Транзистор, изобретенный чуть больше десятилетия назад в лаборатории Белла, получил повсеместное распространение. А это означало появление радиоприемников на батарейках в жестком пластиковом корпусе, которые умещались на ладони. Исследователи искали способы уменьшить размеры приборов, например катушечных магнитофонов, которые тогда были схожи с чемоданами. Компьютеры, раньше занимавшие целые комнаты, теперь были величиной с автомобиль.
Фейнман понимал, что инженеры еще не совсем осознали свои возможности. «Говорят, на рынке появился прибор, с помощью которого можно записать “Отче наш” на булавочной головке, — сказал он в конце 1959 года на ежегодном собрании Американского физического общества в Калтехе. — Но это еще ничего, — добавил он и призвал ученых двигаться дальше, внутрь атома. — Там, внутри, нас ждет мир невообразимо меньших масштабов». На булавочной головке могут поместиться все двадцать четыре тома «Британской энциклопедии» с картинками, если уменьшить издание в двадцать пять тысяч раз. И это тоже «еще ничего»: каждая из едва заметных точек, составлявших полутона на фотогравюре, содержала примерно тысячу атомов. Чтобы воссоздать и прочесть миниатюрную «Британнику», Фейнман предложил использовать инженерные технологии, существовавшие в то время, — развернуть линзу электронного микроскопа и направить фокусируемый ионный луч на небольшой участок поверхности. Таким образом в небольшой брошюре уместились бы все книги мира.
Но метод непосредственного уменьшения слишком груб, продолжал он. С появлением телефонов и компьютеров возникло новое восприятие информации: одна буква равноценна семи-восьми битам, а бит содержит сотню атомов; все печатные издания, какие только существуют в мире, можно записать на куб размером не больше пылинки. Участники собрания, непривычные к такого рода лекциям, слушали его как завороженные. «Так что никому не нужны ваши микропленки!» — подытожил он.