Читаем Гении и аутсайдеры: Почему одним все, а другим ничего? полностью

Подозреваю, где-то в глубине вашей памяти забрезжили смутные воспоминания об уроках алгебры в средней школе. Но будьте уверены, нет нужды вспоминать школьную программу, чтобы оценить важность примера на видео. Читая запись монолога Рене, думайте не о том, что, а о том, почему и как она говорит.

Компьютерная программа, разработанная Шонфельдом, позволяет студентам учиться рассчитывать угловой коэффициент. Угловой коэффициент — как, я уверен, вы помните (или, точнее сказать, уверен, вы не помните, во всяком случае, я не помнил) — есть отношение противолежащего катета к прилежащему. Угловой коэффициент равен 1, поскольку интервал изменения абсциссы равен 5 и интервал изменения ординаты также равен 5.

Итак, Реве сидит за клавиатурой и пытается сообразить, какие числа нужно ввести, чтобы программа нарисовала абсолютно вертикальную линию, совпадающую с осью у. Те, кто еще помнит уроки математики, понимают, что это в принципе невозможно. У вертикальной линии «неопределенный» угловой коэффициент. Ее интервал изменения ординаты бесконечен: любое число на оси у, начиная с нуля и до бесконечности. А интервал изменения абсциссы на оси х равняется нулю. Бесконечность, поделенная на нуль, не является числом.

Но Рене и не догадывается, что она пытается решить задачу, у которой нет решения. По выражению Шонфельда, девушка пребывает в блаженном заблуждении. Профессору особенно нравится показывать эту запись, поскольку она наглядно демонстрирует, как Рене постепенно выходит из этого заблуждения.

Рене — медсестра. Она никогда прежде не интересовалась математикой и на работе ни имела с ней дела. Но случайно получив доступ к этой программе, уже не может от нее оторваться.

— Я хочу провести прямую линию, параллельную оси у, — начинает девушка. Шонфельд сидит рядом с ней. Рене взволнованно смотрит на него. — Я уже пять лет всем этим не занималась.

Она принимается экспериментировать, вводя различные числа.

— Если я изменю угловой коэффициент вот так… минус один… Мне нужно сделать эту линию прямой.

Линия на экране монитора меняется в зависимости от вводимых чисел.

— Ой, так не получается.

У Рене удивленный вид.

— Что ты хочешь сделать? — спрашивает ее Шонфельд.

— Я хочу провести линию, параллельную оси у. Что мне для этого нужно? Кажется, мне нужно что-то изменить вот здесь (она показывает на рамку, куда вводится число для оси у). Вот что я поняла: если ты ставить вместо единицы двойку, то график резко меняется. Так, если мне нужно подняться выше, нужно менять дальше.

Это и есть «блаженное заблуждение» Рене. Она установила, что чем выше координата на оси у, тем больше поднимается линия. Из чего она делает вывод: вертикальную линию можно нарисовать, введя достаточно большую координату на этой оси.

— Думаю, двенадцати или тринадцати будет достаточно. А может быть, даже пятнадцати.

Она хмурится, пытаясь вместе с Шонфельдом разобраться, что к чему. Задает ему вопросы. Он осторожно подталкивает ее в нужном направлении. Она предпринимает одну попытку за другой, пробует один вариант за другим.

В какой-то момент она вводит 20. Линия немного поднимается.

Она вводит 40. Линия поднимается еще выше.

— Тут есть очевидное соотношение. Но никак не могу сообразить, что к чему… А если я введу восемьдесят? Если при сорока линия поднялась наполовину, тогда при восьмидесяти она должна подняться точно до оси у. Посмотрим, что у нас выйдет.

Она вводит 80. Линия поднимается еще выше, но все еще не вертикальна.

— А-а-а, это бесконечность, да? Линия никогда не будет совпадать с осью.

Рене близко подошла к решению. Но затем вновь возвращается к изначальному заблуждению:

— Так что же мне нужно сделать? Ввести сто? Каждый раз, когда число удваивается, линия приближается к оси наполовину. Но так и не доходит до нее. — Она вводит 100. — Уже ближе. Но все равно не совпадает.

Рене начинает думать вслух. Очевидно, ответ вот-вот будет найден.

— Ага, я так и знала… но… я знала. Больше число, выше линия. Только никак не могу понять, почему…

Она умолкает, глядя на экран монитора.

— Совсем запуталась. Одна десятая расстояния до единицы. Но я не хочу, чтобы…

И тут ее осеняет.

— Ага! Любое число, поделенное на нуль! — Ее лицо светится от радости. — Вертикальная линия есть любое число, поделенное на нуль, а это неопределенное число. О-о-о! Ладно. Теперь все ясно. Угловой коэффициент вертикальной линии нельзя определить. А-а-а! Теперь в этом есть смысл. Никогда этого не забуду!

6

За годы своей работы Шонфельд записал на видео многих студентов, пытающихся решить те или иные математические задачи. Но запись с Рене — одна из его любимых, поскольку она идеально иллюстрирует то, что он считает ключом к изучению математики. От начала эксперимента до фразы «А-а-а, теперь в этом есть смысл» прошло двадцать две минуты. Это много. «Это задача для восьмого класса, — говорит Шонфельд. — Но если я посажу на место Рене обычного восьмиклассника, уверен, после нескольких попыток он скажет: „Я не понимаю“, „Объясните мне“».

Перейти на страницу:

Похожие книги

10 гениев бизнеса
10 гениев бизнеса

Люди, о которых вы прочтете в этой книге, по-разному относились к своему богатству. Одни считали приумножение своих активов чрезвычайно важным, другие, наоборот, рассматривали свои, да и чужие деньги лишь как средство для достижения иных целей. Но общим для них является то, что их имена в той или иной степени становились знаковыми. Так, например, имена Альфреда Нобеля и Павла Третьякова – это символы культурных достижений человечества (Нобелевская премия и Третьяковская галерея). Конрад Хилтон и Генри Форд дали свои имена знаменитым торговым маркам – отельной и автомобильной. Биографии именно таких людей-символов, с их особым отношением к деньгам, власти, прибыли и вообще отношением к жизни мы и постарались включить в эту книгу.

А. Ходоренко

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес
100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес
20 великих бизнесменов. Люди, опередившие свое время
20 великих бизнесменов. Люди, опередившие свое время

В этой подарочной книге представлены портреты 20 человек, совершивших революции в современном бизнесе и вошедших в историю благодаря своим феноменальным успехам. Истории Стива Джобса, Уоррена Баффетта, Джека Уэлча, Говарда Шульца, Марка Цукерберга, Руперта Мердока и других предпринимателей – это примеры того, что значит быть успешным современным бизнесменом, как стать лидером в новой для себя отрасли и всегда быть впереди конкурентов, как построить всемирно известный и долговечный бренд и покорять все новые и новые вершины.В богато иллюстрированном полноцветном издании рассказаны истории великих бизнесменов, отмечены основные вехи их жизни и карьеры. Книга построена так, что читателю легко будет сравнивать самые интересные моменты биографий и практические уроки знаменитых предпринимателей.Для широкого круга читателей.

Валерий Апанасик

Карьера, кадры / Биографии и Мемуары / О бизнесе популярно / Документальное / Финансы и бизнес
100 способов заработать деньги в трудные времена
100 способов заработать деньги в трудные времена

Многие почему-то уверены, что в кризисные, нестабильные времена лучше не высовываться и держаться за свою работу, какой бы скучной и малооплачиваемой она ни была. Однако мнение это ошибочно. Ведь сколько известно случаев, когда человек, попав под сокращение, в считаные дни нашел себе должность куда лучше или вообще занялся, наконец, тем, о чем мечтал всю жизнь и на что до сих пор не решался.Как не растеряться, внезапно лишившись источника доходов и найти работу своей мечты?Как выжить предпринимателю в кризисной обстановке? Какие сферы деятельности, по прогнозам, не только не вымрут в ближайшее время, но и позволят неплохо заработать? Какие профессии гарантируют максимальную надежность во все времена?Решить все эти вопросы вам поможет наша книга.И помните: в каждой проблеме заключена скрытая возможность, и при правильном подходе просто не бывает таких времен, в которые нельзя заработать и преуспеть.

Александр Попов

Карьера, кадры / О бизнесе популярно / Финансы и бизнес