В апреле 1900 года шотландец Уильям Томсон (больше известный как лорд Кельвин) выступил с докладом о проблемах в изучении эфира и абсолютно черного тела. Эти проблемы он метафорически назвал тучами, омрачавшими теории света и тепла. Однако лорд Кельвин и не представлял себе, что в попытках развеять эти тучи будут созданы две новые физические теории, которые определят границы применимости всей существовавшей науки. Начиная с первых десятилетий XX века эти две новые теории – теорию относительности и квантовую механику – стали называть новой физикой, в противовес «классической физике», к которой были отнесены все более ранние физические теории. При этом слово «классическая» вовсе не означало «устаревшая»: именно эта физика объясняла большинство явлений обычной жизни, использовалась при изучении движения планет, строительстве мостов и так далее. Законы классической физики выполняются всегда, когда речь идет о скоростях, намного меньших скорости света; в противном случае необходимо обратиться к теории относительности. Классическая физика применима и при изучении систем, которые по размерам значительно превышают отдельные атомы – в противном случае ей на смену приходит квантовая механика. Теория относительности и квантовая механика не только определили границы классической физики, но и повлекли за собой радикальный пересмотр понятий, опиравшихся на чисто интуитивные представления о мире. Классические представления о пространстве и времени, волнах и частицах, принципе причинности и других понятиях следовало пересмотреть, отказавшись от всех прошлых идей, предложенных выдающимися философами и учеными прошлого.
Теория относительности (общая и специальная) фактически является творением одного человека, Альберта Эйнштейна, и была создана за довольно короткий период. На формулирование квантовой механики потребовалось намного больше времени и усилий многих ученых, в том числе и Гейзенберга. В 1925 году, когда ему не исполнилось и двадцати четырех, он первым определил формальные основы квантовой механики, за что в 1932 году был удостоен Нобелевской премии. Согласно официальному заявлению Нобелевского комитета, квантовая механика – «универсальный метод решения многочисленных задач, возникших в результате непрерывных экспериментальных исследований в области теории излучения […]; привел к созданию новых понятий и открыл новые горизонты научного мышления […], имеющие первостепенную важность при изучении физических явлений».
В заявлении также отмечено, что Гейзенберг предсказал существование двух аллотропных форм водорода, которые позднее были обнаружены экспериментально. Тем не менее Гейзенберг получил Нобелевскую премию не за открытие принципа неопределенности (самой известной его теории), поскольку он представляет собой всего лишь следствие всего вышеупомянутого. Не говорится в заявлении и о бесконечных прикладных результатах квантовой механики, потому что в те годы их нельзя было и вообразить. Компьютеры, мобильные телефоны, DVD-проигрыватели и так далее – во всех этих электронных устройствах, без которых мы не представляем себе жизни в XXI веке, применяются технологии, основанные на использовании полупроводников, или лазеров, которые, в свою очередь, появились благодаря квантовой механике. Чтобы вы могли себе представить, насколько важную роль играет квантовая механика в повседневной жизни, приведем только один факт: по оценкам, результатом применения квантовой механики в той или иной мере является 30 % валового внутреннего продукта США.
Может показаться странным, что большинство отцов-основателей атомной физики и квантовой механики были немцами. Однако это легко объяснить тем фактом, что в начале XX века Германия лидировала в мировой науке. Гораздо удивительнее другое: все важные открытия были сделаны в самые трудные для страны годы. После Первой мировой войны большинство немецких ученых продолжали свою работу, но финансирование исследований из-за тяжелой экономической ситуации было крайне затруднено. И несмотря на это квантовая механика была успешно создана и нашла применение.
Веймарская республика, образованная после Первой мировой войны, не пережила пришествия нацизма в 1933 году. И мы подходим ко второму важному эпизоду в жизни Гейзенберга, о котором рассказывается в пьесе Фрейна, – речь о визите ученого в Копенгаген в годы нацистского господства в Европе. Споры о причинах этой встречи не умолкают до сих пор. Одни считают, что Гейзенберг хотел получить через Бора информацию о ядерной программе союзников, другие – что он, напротив, собирался информировать самих союзников о немецкой программе. А быть может, он намеревался вызвать в научном мире дискуссию о возможности использования ядерного оружия, за которой мог последовать международный бойкот подобных видов вооружения? По сути, копенгагенский визит – лишь небольшой эпизод, касающийся участия Гейзенберга в немецкой ядерной программе и создании атомной бомбы.