c) В первом случае мы получаем, очевидно, категорию высоты. В самом деле, как нам произвести различие в недрах тона как тона, тона как такового? Алогическое становление должно быть проведено в тоне так, чтобы он изменялся сам внутри себя, не переставая быть тоном, но также еще и не переходя в тембр. Это есть высота. Тут перед нами одно из очень тонких диалектических построений, и необходимо отдавать себе полный отчет во взаимоотношении высоты тона и самого тона.
Можно сказать тут так. Мы получили категорию тона в сфере эйдетической, как эйдетически–материально заполненную структуру числа. Так как каждую категорию мы можем рассматривать в свете всякой другой, то на первый взгляд кажется достаточным просто рассмотреть тон в свете самотождественного различия и получить отсюда понятие высоты, совершенно, таким образом, не выходя в сферу вне–эйдетического алогического становления. Однако это рассуждение неправильно. В основе его лежит ложное убеждение в том, что тон, мелодия и гармония как таковые уже предполагают высоту и чередование высот–ностей. Я считаю, что это совершенно неверно. Одну и ту же мелодию, одну и ту же гармонию, один и тот же тон можно проиграть и взять на любой высоте. Раз это так, то уже от одного этого аргумента рушится вся необходимость существенно связывать тон с его высотой. Мелодия и гармония есть фигурность, совершенно независимая от высоты звука как такой. Это — такая структура, которая должна быть описана вне категории высоты и тем более вне разных степеней высоты. Применяя к понятию тона точку зрения самотождественного различия, мы отнюдь не получаем понятие высоты, но получаем дифференцию самих тонов по себе. Do, re, mi и т. д. — отнюдь не есть ряд высотно–стей, раз эти do, ге и т. д. могут быть на любой высоте. Это — дифференция чисто тоновая, чисто количественная, без всякого намека на высоту. А чтобы получить высоту, надо выйти за пределы тонов как таковых, надо выйти за пределы чисто количественных взаимоотношений. Надо к этим тоновым различиям прибавить нечто иное, надо их заполнить новым алогическим содержанием; надо их применить к такой новой сфере, которая была бы уже не тоновой и не количественной только, но полной противоположностью к этому. Это и есть звуко–высотная сфера, высотный фон, в котором воплощаются чисто тоновые дифференции.
d) Далее, что мы получаем, если мыслим отражен–ность на третьем начале не самотождественного различия, но подвижного покоя числа? Самотождественное различие само по себе, как чисто числовой момент, дало нам, как мы помним, сначала категорию симметрии, потом категорию гармонии. Отражаясь на вне–числовом алогическом становлении, эти категории дали высоту. Что же дала и дает категория подвижного покоя? Сначала — в чистом числе — это был ритм; потом числовая алогическая заполненность ритма дала категорию мелодии. Теперь нам предстоит взять ритм и мелодию, мелодико–ритмическую фигуру так, чтобы получилась не она сама, но то, как она воплощается на вне–числовом фоне, на вне–смысловом становлении. Последнее уже обнаружило свою общую природу, поскольку оно мыслится отражающим тот или иной момент эйдоса числа. Эта природа — высотная. Если мы говорим теперь о подвижном покое — надо, чтобы высотность выявила некое движение и некий покой. Движение приведет нас к изменению одной высоты в другую. Значит, нужно, чтобы была такая категория, которая сама по себе указывала бы на высотное изменение. Но должен быть выражен также и покой. Отсюда, высотное изменение должно быть не просто изменением, но изменением в определенном направлении, а именно таким изменением, чтобы конечный его пункт совпадал с начальным. Разумеется, поскольку идет речь о движении, — уже нельзя будет говорить о полном и абсолютном тождестве конечного и начального пункта. Это должно быть тождеством в разных плоскостях, и если речь идет о движении высот, то — в разных высотностях. Имея такой ряд высотностей, мы, приходя к последней высотности, должны видеть, что тут именно конец ряда, а не просто рядовая высота и что тут достигнута цель движения по ряду, что если будем двигаться дальше, то придем не к чему другому, как к повторению уже пройденного ряда. Такая категория есть гамма. Это именно есть ряд высот, замкнутый определенными началом и концом, совпадающими в этой своей функции ог–раничивания и замыкания. Придя от начала гаммы к концу, мы как бы описали круг и, как в круге, можем тут двигаться и покоиться одновременно. Это и значит, что гамма предполагает понятия покоя и движения. Но это не просто покой и движение. Просто покой и движение дали бы нам ритм, или ритмическую фигуру. А тут именно не сами по себе покой и движение, но то, как отражены они в инобы–тийной сфере. Поэтому в гамме мы интересуемся не ритмом, но самими высотностями. Гамма есть мелодия минус ритм.