Читаем Физика времени полностью

Это означает наличие в них определенной симметрии. Вспомним данное Вейлем определение симметрии (см. главу 12): объект является симметричным, если над ним можно произвести операции, в результате которых он будет выглядеть точно так же, как и прежде. В данном случае объектом служат законы движения, а операция, которая над ними производится, — это обращение времени. Симметрию относительно обращения времени называют T-инвариантностью. T-инвариантность представляет собой общее свойство движений — не только механических, но и вообще всех движений, управляемых любыми силами природы. Для сил электромагнитных это доказано электродинамикой. Для тяготения — ньютоновской теорией и общей теорией относительности. Все известные эксперименты с сильным и слабым взаимодействием тоже указывают на это — за одним единственным исключением, о котором мы чуть позже скажем.

Любопытная иллюстрация обращения времени — показ кинофильма в обратном направлении. Все события развиваются тогда на экране не от прошлого к будущему, а от будущего к прошлому. Тем не менее многое происходит при этом вполне естественным путем. Например, девочка подбрасывает и ловит мяч, кто-то берет с полки книгу и так далее. Но вот разлитое на столе молоко само собою собирается в чашку. Это уже невозможное событие, такого не бывает, и мы сразу узнаем здесь неправильный, обращенный ход событий. По чисто механическим явлениям оба направления в ходе событий не отличить. Но как только возникает необратимое явление — разливается молоко, горит свеча и так далее, — различие между прямым и обращенным течением времени обнаруживается самым очевидным образом.

Но откуда возникает необратимость, если законы движения обладают T-инвариантностью? Ведь, например, перемешивание газов и жидкостей происходит благодаря механическим движениям атомов и молекул, а эти движения безразличны к направлению времени, они не способны выделить направление от прошлого к будущему.

Вопрос действительно не простой. О нем говорят как о парадоксе обратимости, и вокруг него было немало острых споров. Разрешение парадокса предложил Больцман; ему энергично возражал Пуанкаре, но прав все же оказался Больцман.

Вот его рассуждение. Из свойств механических движений молекул следует, что возможно как перемешивание двух газов, так и обратный процесс, когда эти газы, перемешавшись, снова затем разделятся. Капля сиропа, расплывшись по воде, может снова собраться, стянуться и оказаться на прежнем месте. Тепло может перейти обратно к тому из двух соприкасающихся брусков, который раньше был горячим. Все эти события возможны: раз имеется обратимость в движениях отдельных атомов, значит, обратимо и поведение всего их коллектива. Категорического запрета на эти события нет. На это и указывал Пуанкаре. Но все дело в том, что такие обратные явления происходят очень и очень редко.

Вот что говорит об этом Больцман: «Нельзя предполагать..., что два диффундирующих газа смешаются и разделятся несколько раз в течение немногих дней. Время, в течение которого можно надеяться наблюдать (хотя бы один) случай разделения, настолько велико, что исключается любая возможность наблюдать такой процесс». Обратные явления происходят так редко, что за всю историю Вселенной ни одному из них не случилось произойти. А это означает, что фактически они вообще не происходят.

Прямое и обратное явления в принципе допустимы оба. Они различаются лишь частотой, с которой в действительности происходят: прямые происходят очень часто (то есть практически всегда), а обратные очень редко (то есть практически никогда). Больцман подсчитал частоту (или, иначе, вероятность) прямых и обратных явлений и тем самым показал, что поведение большого коллектива частиц, совершающих обратимые, T-инвариантные движения, будет уже практически необратимым. Когда в любой физической системе имеется отклонение от теплового равновесия, естественное развитие событий всегда таково, что система изменяется в направлении, приближающем ее к равновесию.

Скажем теперь об уже упомянутом исключении из общего правила Т-инвариантности движений. Речь идет не о большом коллективе частиц, а об одной элементарной частице, называемой нейтральным К-мезоном. Это нестабильная, распадающаяся частица, и из свойств ее распада следует (хотя, надо сказать, и несколько косвенно), что ее поведение не обладает T-инвариантностью *). Частица «различает» прошлое и будущее; два направления времени для нее не равноценны, не симметричны.

*) Подробнее об этом читатель может узнать из книги: Окунь Л. Б. Физика элементарных частиц. — М.: Наука, 1984.

Так не отсюда ли возникает действительное направление времени?

Догадка напрашивается, кажется, сама собой. Но К-мезон — очень редкая частица, и его распад — слишком редкое явление, глубоко запрятанное к тому же в недра микромира. Трудно представить себе, как эти частицы могли бы управлять временем везде и всегда всей Вселенной.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука