Вот экспериментальный пример двойственности свойств электрона. Пучок электронов определенной энергии направляется на кристалл, за которым ставится фотопластинка. Пройдя сквозь кристалл, электроны создают на фотопластинке типичную дифракционную картину с правильным чередованием светлых и темных колец (или полос). Эту картину нельзя понять иначе как на основе волновых представлений: она возникает из-за наложения волн, рассеянных каждым атомом кристалла.
Но с другой стороны, уже выйдя из кристалла, каждый отдельный электрон попадает на фотопластинку и дает почернение только в одном месте, в одном зерне фотоэмульсии. Значит, электрон ведет себя по-разному при взаимодействии с кристаллом и при взаимодействии с фотопластинкой. Когда происходит рассеяние на кристалле, он подобен волне, имеющей какое-то протяжение в пространстве, и охватывает сразу много атомов кристалла. А при попаданий на зерно эмульсии он действует как более или менее «точечная» частица, находящаяся строго в пределах этого зерна.
Конечно, такая двойственность свойств означает, что объекты микромира не являются в действительности ни волнами, ни частицами в обычном понимании. Они представляют собою нечто третье, чему в нашем повседневном опыте нет никакого подобия. И прежняя доквантовая физика «обычных» тел и «обычных» волн никаких такого рода двойственных свойств не знала.
Поведение микрочастиц регистрируется нашими приборами, которые сами являются «обычными» телами. И потому, извлекая сведения о микрочастицах, приборы сообщают нам результат измерения на одном из тех двух «языков», которые им только и доступны — либо на языке волн, либо на языке частиц. Дополняя результаты эксперимента, в котором данная микрочастица проявляла себя, скажем, как волна, результатами другого эксперимента, в котором она проявляла себя как частица, можно составить полную картину свойств этого объекта.
В каждом отдельном эксперименте микрочастица раскрывает себя не полностью. Но дело не сводится только к этому. Даже когда микрочастица проявляет себя, например, как частица, в ее поведении остается еще немало необычного. В классической механике состояние движения данной частицы полностью описывается и определяется двумя физическими величинами — координатой частицы в пространстве и ее скоростью (или импульсом). Для каждого момента времени координата и скорость имеют конкретное, вполне определенное значение*). В микромире это, как оказывается, совсем не гак. Микрочастица не может иметь сразу определенное значение координаты и определенное значение скорости (или импульса) — только одно из двух. Если определена координата, то скорость остается неопределенной. Если определена скорость, то неопределенной будет координата, и в этом последнем случае частица уже не может считаться точечной.
*) Нас интересует не внутреннее устройство частицы, а только ее движение как целого. Поэтому, как принято в классической механике мы можем считать ее точечной, рассматривать как материальную точку.
Именно эта особенность поведения микрочастиц обеспечивает существование атомов. Представим себе, что электроны двигались бы в атоме наподобие «обычных» частиц — по орбитам вокруг ядра, подчиняясь законам классической механики, как планеты вокруг Солнца. Поскольку такое движение не является равномерным и прямолинейным, каждый электрон должен — по законам классической электродинамики — излучать электромагнитные волны. При этом он терял бы свою энергию на излучение волн, и его орбита скручивалась из-за этого в спираль. По такой спирали он очень скоро должен был бы соскользнуть к ядру и упасть на него. Тогда и атом, любой атом в мире и все они вместе прекратили бы свое существование.
Но атомы существуют, и все дело в том, что электроны и атомы представляют собою не «обычные» частицы, а частицы микромира, подчиняющиеся особым квантовым закономерностям. Квантовая теория запрещает электрону «классическое» поведение, она не позволяет ему упасть на ядро, ибо в противном случае он имел бы сразу и определенное значение скорости (равное нулю в системе отсчета, связанной с ядром), и занимал бы определенное положение (в самом центре атома). Атомы существуют, ибо скорость (импульс) и координата электрона не могут одновременно иметь определенное значение.
Соотношение неопределенностей