Большой коллектив распадающихся частиц представляет собой удобные часы: по числу частиц, распавшихся или выживших к данному моменту, можно измерять промежутки времени. Эти часы указывают время в собственной системе отсчета частиц. Если число положительных пионов уменьшилось вдвое, значит, по их собственным часам прошло 17 миллиардных долей секунды. Если частиц стало вчетверо меньше, значит, прошло 34 миллиардных секунды и так далее.
В реальном эксперименте пионы удается разогнать до скорости, составляющей 90% скорости света. И вот оказалось, что быстро движущиеся пионы живут дольше, чем неподвижные. По лабораторным часам, мимо которых проносились пионы, их среднее время жизни составило миллиардных секунды. Это в два с лишним раза больше времени жизни покоящихся частиц. Соответственно измеренное по лабораторным часам время полураспада летящих пионов составило 39 миллиардных секунды.
Результат эксперимента со всей определенностью демонстрирует относительность времени, о которой говорит теория. С нашей точки зрения, то есть по часам нашей лаборатории, быстро летящие пионы распадаются, «тают» медленнее, чем такие же частицы, покоящиеся в нашей лаборатории. Когда число летящих пионов стало вдвое меньше исходного, от покоящихся пионов осталось менее четверги их исходного числа.
Можно сказать, что с нашей точки зрения, по часам нашей лаборатории, все события здесь у нас происходят вдвое быстрее, чем там у них — у летящих пионов.
Чем больше скорость, с которой проносятся мимо нас частицы, тем медленнее они распадаются, тем дольше — для нас — живут. Если бы пионы удалось разогнать еще сильнее, скажем, до скорости, составляющей 99,9999% скорости света, время жизни этих частиц, измеренное по лабораторным часам, возросло бы в сотни раз. Чтобы довести время их жизни до нескольких секунд, надо сообщить частицам скорость, которая отличалась бы от скорости света на 10-14 процента. А чтобы жить — для нас — вечно, их скорость относительно нас должна совпасть со скоростью света. Но последнее невозможно: со скоростью света не могут двигаться никакие частицы, масса которых отлична от нуля *).
*) Напомним, что частиц с нулевой массой известно не так уж много. Это, собственно, только фотон – квант света. Нулевую массу должен также иметь, согласно теории, гравитон - гипотетическая частица, квант тяготения, предсказываемый обшей теорией относительности (см. главу 13): возможно, нулевую массу имеют нейтрино: сами эти частицы надежно регистрируются, но точно измерить их массу пока не удается.
Красное, зеленое, голубое
Возможно, многие слышали шутку про находчивого водителя, который проскочил перекресток на красный свет светофора, а когда его остановили, стал оправдываться тем, что красный свет показался ему зеленым — физика это допускает, если вы движетесь навстречу источнику света.
— Но при какой скорости? — спросили его.
— Легко прикинуть — что-то около 75 % скорости света.
— В таком случае вы будете оштрафованы за превышение скорости.
Красный свет действительно покажется зеленым или даже голубым, если мчаться навстречу источнику света с достаточно большой скоростью или если сам источник света очень быстро движется к нам навстречу. Более полувека назад астроном из Пулковской обсерватории А. А. Белопольский воспользовался этим физическим эффектом, чтобы измерять скорости звезд . Если звезда летит на нас, ее свет кажется нам более голубым, если от нас — более красным.
Физики знали об этом эффекте изменения цвета при движении источника еще раньше, с середины прошлого века. Цвет света зависит от длины волны электромагнитных колебаний. Чем больше длина волны видимого света, тем ближе цвет к красному краю спектра; чем меньше она, тем цвет ближе к голубому краю спектра. Длина волны в испускаемом источником свете не совпадает с длиной волны в принимаемом свете, если имеется относительное движение источника и приемника: когда источник и приемник сближаются, длина волны в принимаемом свете оказывается короче, чем в испущенном; если же они удаляются друг от друга, длина волны, наоборот, возрастает.
Наглядно это можно представить так: когда источник и приемник сближаются, волна как бы сжимается, а когда они удаляются друг от друга, волна растягивается.
Такая зависимость цвета и длины волны от движения источника света называется эффектом Доплера, по имени открывшею его австрийского физика.