Читаем Физика времени полностью

Самое значительное научное достижение эпохи Возрождения — это учение Коперника (1473—1543). Взамен дальнейших попыток усовершенствования геоцентрической системы Птолемея, предпринимавшихся вплоть до его времени, Коперник предложил хорошо известную теперь всем идею: Солнце находится в центре планетной Системы, а Земля и остальные планеты обращаются вокруг него.

Прежде всего, система мира стала от этого много проще, понятнее и естественнее. В гелиоцентрической системе Коперника все стало на свои места. Но не менее важно и то, что это было торжество новых взглядов на природу, на Землю и небеса, свободных от церковных догм и предрассудков в науке. Это был поворот от умозрений к конкретному опыту, прямым астрономическим наблюдениям. С этого начались замечательные успехи естественных наук нового времени. У их колыбели вместе с Коперником стояли Галилей и Ньютон.

На этом новом пути стало возможным создание механики, физического учения о механических движениях. Мы называем сейчас механику Галилея и Ньютона классической; она дала первую научную теорию времени.

<p>Галилей </p>

Галилей родился почти на целый век позже Коперника. Ему суждено было привести идею о гелиоцентрической системе к полному признанию. Физический эксперимент и астрономические наблюдения были его стихией, и они щедро наградили его самыми блестящими открытиями.

В 1610 году Галилей направил на небо изобретенный им новый инструмент — телескоп, и открытия немедленно последовали одно за другим. Галилей обратил телескоп к Млечному пути и установил, что это не сплошная белесоватая полоса света, а совокупность множества звезд. Так была открыта наша Галактика — звездная система, насчитывающая сотни миллиардов звезд, одной из которых является наше Солнце.

Наблюдая в телескоп Юпитер, Галилей открыл четыре его больших спутника. Это были луны Юпитера, и наша Луна оказалась, таким образом, уже не единственным спутником в Солнечной системе.

Настоящим триумфом Гелиоцентрической системы Коперника стало открытие Галилеем фаз Венеры. С этого времени сомнения в системе Коперника окончательно отпали, ибо смена

фаз Венеры с полной очевидностью указывала на ее вращение вокруг Солнца.

Хорошо известны физические эксперименты, которые производил Галилей. Мы уже говорили об экспериментах с маятниками, из которых родилась идея маятниковых часов. Эксперименты со свободным падением тел дали представление о важнейших свойствах земного притяжения, о законах движения под действием притяжения. Галилей установил, что вертикальная скорость любого свободно падающего тела возрастает в поле тяжести пропорционально времени. Все тела, независимо от их массы, размеров, формы, падают с одинаковым ускорением*).

*) Три столетия спустя Эйнштейн увидел в этом один из самых фундаментальных принципов физики (см. главу 8).

Глубокие размышления над различными видами движений в окружающем нас мире привели Галилея к принципу относительности. В современной формулировке его можно кратко выразить следующим образом:

Во всех лабораториях, которые движутся друг относительно друга равномерно и прямолинейно, движение тел происходит по одинаковым законам.

<p>Относительность </p>

Галилей разъяснял это положение различными наглядными примерами. Вот путешественник в закрытой каюте спокойно плывущего корабля. Он не замечает никаких признаков движения. Если в каюте летают мухи, они отнюдь не скапливаются у задней ее стенки, а свободно летают по всему объему. Если подбросить мячик прямо вверх, он упадет прямо вниз, а не отстанет от корабля, не упадет ближе к корме.

Из принципа относительности следует, что между покоем и движением — если оно равномерно и прямолинейно — нет никакой принципиальной разницы. Разница только в точке зрения.

Например, путешественник в каюте корабля с полным основанием считает, что книга, лежащая на его столе, покоится. Но человек на берегу видит, как корабль плывет, и он имеет все основания считать, что книга движется и при том с той же скоростью, что и корабль. Так движется ли на самом деле книга или покоится?

На этот вопрос нельзя, очевидно, ответить просто «да» или «нет». Спор между путешественником и человеком на берегу был бы пустой тратой времени и слов, если каждый из них настаивал бы только на своей правоте и отрицал точку зрения партнера. Они оба правы, и чтобы согласовать позиции, им нужно только признать, что книга покоится относительно корабля и движется вместе с кораблем относительно берега.

Этот вывод полностью согласуется со здравым смыслом и с любым экспериментом, который мы пожелали бы провести, чтобы это проверить.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука