После завершения полного цикла работы тепловой машины система возвращается в свое исходное состояние, т. е. температура и давление пара принимают первоначальные значения. Работа, которую совершил при этом пар, может быть численно измерена площадью
Для того чтобы пар совершал работу, необходимо наличие теплоотдатчика с высокой температурой и теплоприемника с более низкой температурой. При этом КПД тепловой машины не зависит от конструктивных особенностей и от свойств рабочего тела (пара), а определяется только температурой теплоотдатчика и теплоприемиика.
Цикл Карно не учитывает потерь энергии на трение, излучение и т. д. Однако такие потери всегда имеют место в реальных тепловых машинах. Поэтому КПД реальных машин всегда меньше значения, вычисленного по приведенной формуле.
Изучение термодинамических циклов позволило изыскивать верные пути в работе над усовершенствованием тепловых машин, над повышением их экономичности.
Развитие машинной техники и науки привело к созданию паровых двигателей различных типов. Некоторые из них применяют и сейчас на железнодорожном и водном транспорте. Но на смену им уже приходят новые типы двигателей — паровые турбины, двигатели внутреннего сгорания, электродвигатели, а также реактивные и ракетные двигатели, создание и усовершенствование которых шло и идет в ногу с развитием физической науки.
Гидромеханика и судостроение
К началу XIX в. парусные суда уже не могли обеспечивать перевозку грузов в количестве, необходимом для удовлетворения потребностей промышленности, так как использование ветра в качестве движущей силы не позволяло достигать высоких скоростей при большом водоизмещении судна.
С использованием паровых машин в качестве двигателей значительно возросли скорость и водоизмещение судов. Так, если скорость лучших парусных судов XVIII в. составляла 20–25
Увеличение скорости движения судов, а также замена гребных колес на гребные винты тесно связаны с разработкой теории о движении тел различной формы в жидкости и о силах, действующих при этом движении.
Всеми этими вопросами занимается гидромеханика — наука о законах движения жидкости и взаимодействия ее с твердыми телами.
Начало развития гидромеханики было положено еще Леонардо да (Винчи, Галилеем и Ньютоном, но их исследования в этой области носили лишь описательный характер и не всегда точно отражали сущность тех или иных явлений. Так, Ньютон, впервые сформулировав закон о пропорциональности силы сопротивления телу, движущемуся в жидкости, скорости движения этого тела, считал, что такое сопротивление обусловлено исключительно ударами частиц о носовую часть тела. В действительности же, как это было выяснено в дальнейшем петербургским академиком Эйлером и известным математиком Д. Бернулли, сопротивление при движении тела в жидкости зависит от вязкости последней и от возникновения вихрей, на образование которых Затрачивается значительная энергия. При этом существенную роль играет величина поперечного сечения тела, движущегося в жидкости или газе: чем больше это сечение, тем больше и сила сопротивления движению. Бернулли была исследована задача о протекании жидкости по трубе с переменным сечением с учетом силы тяжести. При этом выявилась интересная и важная закономерность: давление в жидкости тем меньше, чем больше скорость ее течения (рис. 2).
Почему так происходит? В чем причина такого, на первый взгляд, парадоксального явления?
Рассмотрим уравнение Бернулли, которое в упрощенном виде можно записать так:
Здесь
Для того чтобы сумма этих двух слагаемых оставалась постоянной, необходимо, чтобы при уменьшении (или увеличении) одного из этих слагаемых другое слагаемое увеличивалось (или уменьшалось) на такую же величину.