Читаем Физика в бою полностью

Этот фундаментальный закон теории относительности — закон взаимосвязи массы и энергии — сыграл выдающуюся роль в раскрытии многих тайн атома и его ядра. На его использовании основано получение энергии при расщеплении тяжелых ядер атомов, которое практически осуществляется в реакторах и ядерных боеприпасах. Этот закон показал и путь получения энергии при соединении легких ядер атомов — путь, используемый пока что лишь в термоядерных боеприпасах. Но недалек день, когда люди научатся управлять термоядерной реакцией по своему усмотрению. Эго навсегда избавит человечество от угрозы истощения энергетических ресурсов.

Но как же практически применяется закон взаимосвязи массы и энергии?

По современным представлениям, вся природа состоит из мельчайших частиц — атомов. Атом — сложная частица, состоящая из ядра, вокруг которого вращаются электроны. В ядро входят частицы, примерно равные по массе — протоны и нейтроны. В ядрах легких и средних элементов число протонов равно числу нейтронов. В более тяжелых ядрах число нейтронов несколько больше числа протонов, а в тяжелых ядрах количество нейтронов примерно в 1,5 раза больше, чем протонов. Число электронов на орбитах равно числу протонов в ядре. Интересно, что по весу протон (нейтрон) примерно в 1836 раз тяжелее электрона. Это значит, что в ядре атома сосредоточена почти вся его масса. Согласно закону взаимосвязи массы и энергии в ядре атома сосредоточена в основном и вся его энергия. Вот почему ученые обратили внимание на ядро атома, когда встал вопрос о выделении ядерной энергии.

Часть энергии атома, заключенная в электронной оболочке, выделяется при химических реакциях (горение топлива, взрыв обычных взрывчатых веществ) и называется химической. Взрыв одного килограмма тротила дает около тысячи больших калорий, сгорание килограмма хорошего каменного угля — до 7 тыс., а килограмма нефти — до 11 тыс. больших калорий химической энергии. Вся эта энергия выделяется только в результате перестройки электронных оболочек атомов, участвующих в реакциях взрыва или горения.

Поскольку электронная оболочка содержит незначительное количество энергии по сравнению с энергией ядра, то и изменение массы при сжигании 1 кг каменного угля очень ничтожное, равно 1,68x10-10 кг. Взвешивание такой массы находится в настоящее время за пределами наших возможностей. Наименьший вес, который можно взвесить микровесами, равен около 10-7 кг. Таким образом, измерить разницу в массах, возникающую при реакции горения, невозможно. Сказанное справедливо для любой химической реакции, поскольку в этом случае выделяется количество энергии того же порядка, что и при горении каменного угля. Совершенно иное положение получается при ядерных реакциях.

Образование ядер из протонов и нейтронов сопровождается выделением энергии. Откуда же она появляется? Измерения масс ядер различных элементов показали, что они меньше суммы масс входящих в них частиц — протонов и нейтронов. Эта убыль массы, проявляющаяся при образовании ядер, называется дефектом массы и обозначается m. По закону взаимосвязи массы и энергии можно вычислить энергию, которая выделяется при этом. Она будет равна: Е = mxс2. Эта энергия была названа энергией связи ядра, потому что такое же количество энергии нужно затратить на то, чтобы разбить ядро на составляющие его частицы.

Для всех ядер атомов дефект массы определен специальными приборами — масс-спектрографами. Следовательно, для всех ядер определена и энергия связи. Подсчитаем для примера энергию связи ядра гелия. Масса ядра атома гелия, определенная масс-спектрографическим методом, равна 4,003 атомных единиц массы (аем = 1,66x10-24 г). Сумма же масс двух протонов и двух нейтронов, входящих в ядро атома гелия, равна 4,033 аем. Значит, при образовании ядра гелия дефект (убыль) массы равен 0,03 аем.

На основании закона взаимосвязи массы и энергии энергия связи ядра атома гелия равна:

Е = mxс2 = 0,03x1,66x10-24x(3x1010)2 = 45x10-6 эрг;

здесь m — масса в граммах; с — скорость света в см/сек.

В ядерной физике обычно энергию связи выражают в специальных единицах — миллионах электронвольт (Мэв = 1,6x10-6 эрг). Это значит, что энергия связи ядра атома гелия равна 28 Мэв. Таким же образом можно вычислить энергию связи и других ядер атомов. Например, для ядра урана-235 энергия связи равна 1783 Мэв.

Очень важна величина энергии связи, приходящаяся на одну ядерную частицу — нуклон, E/A, где A — массовое число.

Как видно, энергия связи на нуклон равна величине общей энергии связи ядра Е, деленной на общее число нуклонов в ядре (массовое число А). Для дейтерия E/A равна 1,09 Мэв, трития — 2,77 Мэв, гелия — 7 Мэв, железа — 8,7 Мэв, урана — 7,6 Мэв и т. д.

Рис. 1. Зависимость энергии связи, приходящейся на один нуклон
Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука