Читаем Физика в бою полностью

Однако, несмотря на внедрение этих, так называемых конструктивно-технологических мероприятий, с помощью только их, как считают зарубежные военные специалисты, не удастся обеспечить надежную защиту ракет от коррозии. Поэтому в последние годы борьбу с ней они ведут в основном по линии создания и обеспечения стабильных характеристик микроклимата шахтной среды.

Микроклимат шахты определяет общие условия хранения и содержания ракет на боевом дежурстве, а также сроки, нормы и правила технического обслуживания их в шахтных пусковых установках. На основе изучения состава температурно-влажностного режима и влияния атмосферы шахты на техническую надежность ракет разработаны практические рекомендации по созданию благоприятных климатических условий, обеспечивающих длительное хранение жидкостных и твердотопливных ракет в шахтах. В эти рекомендации входят обеспечение герметизации и гидроизоляции шахт, применение систем вентиляции и установок для кондиционирования воздуха и другое.

Герметизация шахтных пусковых установок достигается применением воздухо- и водонепроницаемых уплотнений защитных крыш и гидроизоляцией шахтных стволов и оголовков. Гидроизоляция шахт осуществляется применением одного или нескольких изоляционных слоев, изготовляемых из металлических или других водонепроницаемых материалов, например покрытий из стеклопластиков.

Необходимая чистота атмосферы в шахте обеспечивается приточно-вытяжными системами вентиляции с резервными воздухозаборниками. Для того чтобы устойчиво поддерживать оптимальный микроклимат шахты независимо от колебаний температуры и влажности воздуха на поверхности земли и внутреннего тепло-и влаговыделения, используются кондиционеры. Стабильность микроклимата шахты достигается автоматическим поддержанием необходимого состава воздуха, температуры, влажности. Как считают зарубежные специалисты, абсолютная влажность воздуха, подаваемого в шахты, не должна превышать 0,4 г на один килограмм.

В 1963 г. ракетное конструкторское бюро инженерного корпуса США разработало систему кондиционирования воздуха для шахт с ракетами «Титан II» на основе использования в качестве рабочего тела хлористого лития. Это вещество обладает высокой гигроскопичностью и легко регенирируется (восстанавливается) при обработке горячим воздухом. Сообщалось, что системы кондиционирования в шахтах для ракет «Титан II» обеспечивают поддержание микроклимата при температуре 16° и относительной влажности не более 30 %. Такой температурно-влажностный режим шахтной пусковой установки, по утверждению американских специалистов, полностью исключает коррозионное разрушение ракет при утечке компонентов топлива и воздействии на ракету шахтной атмосферы.

Однако, как сообщалось, в печати, эти и другие меры защиты не настолько эффективны, чтобы исключить полностью воздействие агрессивных сред шахтной атмосферы на ракеты и шахтные пусковые установки. Поэтому в США разработаны и находят широкое применение различные технические средства для измерения коррозии ракет и наблюдения за состоянием и составом атмосферы шахтных пусковых установок. Так, например, в шахтах для ракет «Титан II» и «Минитмен» используются визуальные и дистанционные системы электрического контроля. С их помощью производится непрерывное считывание метеорологических характеристик микроклимата шахты и степени коррозирования наиболее ответственных деталей и систем ракеты, т. е. постоянно работают своеобразная аварийно-техническая служба и «служба погоды» шахты.

Как видно из вышесказанного, боевая и техническая надежность современного оружия, даже такого мощного и совершенного, как ракетное, во многом зависит от внешних условий. И совсем не безобидным на поверку оказывается обыкновенный воздух, окружающий могучую стальную громаду, где бы она ни находилась — на поверхности земли или под семью замками железобетонной шахты.

<p>ВОЛНА И КОРАБЛЬ</p>Инженер-капитан 3 ранга Г. СВЯТОВ

Океанская волна! Вряд ли найдется читатель, который не представляет себе ее мощи. И конечно, всякий понимает, сколько неприятностей может причинить морякам разбушевавшаяся стихия. Известны исторические примеры, когда штормы срывали крупные морские операции. Во время англо-испанской войны в 1588 г., когда на Британские острова двигалась «Непобедимая армада» испанских кораблей, англичанам оставалось, как говорится, только уповать на бога. Тогда «бог» помог англичанам: боевые корабли великой армады и транспорты с войсками попали в жестокий шторм в Бискайском заливе, и треть кораблей погибла. После неудачной попытки высадить десант испанцы отправились через Северное море вокруг Шотландии к своим берегам. Шторм у Оркнейских островов выбросил на берег и потопил еще ряд кораблей. В Испанию вернулось всего 50 кораблей из 130, потери достигли 20 тыс. человек.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука