Читаем Физика пространства - времени полностью

Взятая нами для исследования двух событий система отсчёта ракеты является довольно-таки специальной, так как и акт излучения, и акт приёма сигнала происходят в ней в одной и той же точке. На рис. 13, в изображён путь отражённого луча в системе отсчёта второй ракеты (система «сверхракеты»), движущейся относительно лабораторной системы отсчёта ещё быстрее, чем первая ракета. В системе этой второй ракеты разность координат 𝑥 двух событий — актов излучения и приёма вспышки (дважды штрихованные величины) 𝑥𝐵ʺ=𝑥𝐴ʺ-Δ𝑥ʺ — отрицательна, ибо акт приёма осуществляется в этой системе отсчёта на отрицательной оси 𝑥. Тем не менее (-Δ𝑥ʺ)²=(Δ𝑥ʺ)² и к тому же можно использовать свойства прямоугольных треугольников на рис. 13, в, из всего этого следует, что полная длина пути светового луча в системе отсчёта второй ракеты даётся выражением 2√1+(Δ𝑥ʺ/2)², которое имеет тот же вид, что и в лабораторной системе. Величина скорости света в системе отсчёта второй ракеты должна быть равна 𝑐, как и в системе первой ракеты. Отсюда найдём время, прошедшее между актами излучения и приёма вспышки:

𝑡

𝐵

ʺ-𝑡

𝐴

ʺ

=

Δ

𝑡ʺ

=

2√

1+(

Δ

𝑥ʺ/2)²

.

Следовательно,

(

Δ

𝑡ʺ)²

-

(

Δ

𝑥ʺ)²

=

(2

м

)

²

,

так что вообще

(

Δ

𝑡)²

-

(

Δ

𝑥)²

=

(

Δ

𝑡')²

-

(

Δ

𝑥')²

=

(

Δ

𝑡ʺ)²

-

(

Δ

𝑥ʺ)²

=

(2

м

)

²

.

(6)

Интервал 𝐴𝐵 имеет одну и ту же величину в системах всех ракет!

Забудем теперь о посланной вспышке, отражателе и о возвращении этой вспышки. Ведь это лишь средства для достижения цели. Они помогли выяснить, какая величина имеет одно и то же значение в различных системах отсчёта. Теперь сосредоточим внимание на этой величине — интервале, оставив в стороне подробности её вывода.

Что одинаково в двух инерциальных системах отсчёта?

Что в них почти одинаково?

Что различной?

Что мы выяснили? Два события, 𝐴 и 𝐵 происходят в одном и том же месте в системе отсчёта ракеты (Δ𝑥'=0), но в разное время (Δ𝑡'=2 м). В лабораторной системе отсчёта эта же пара событий происходит в пространстве на расстоянии Δ𝑥, и, чем быстрее движется ракета, тем больше это расстояние. Этот вывод никого не удивит, и многие с полным правом скажут: «Да это же более чем очевидно!». Удивительно другое. Во-первых, промежуток времени Δ𝑡 между двумя событиями, зарегистрированный в лабораторной системе отсчёта, имеет другую величину, чем зарегистрированный в системе ракеты. Во-вторых, промежуток времени между событиями 𝐴 и 𝐵 по данным, отпечатанным соответствующими двумя хронографами в лаборатории, превышает промежуток времени между теми же двумя событиями, зарегистрированный такими же часами в ракете: Δ𝑡 ≥ Δ𝑡'. В-третьих, пропорция

Δ𝑡

Δ𝑡'

=

1

+

Δ𝑥

2

⎞²

⎤½

,

в которой оказался увеличенным промежуток времени (см. табл. 5), близка к единице (увеличение очень мало), если мало расстояние, которое прошла ракета в промежутке между событиями 𝐴 и 𝐵. Но если ракета движется очень быстро, разность Δ𝑥 очень велика и пропорция, характеризующая несоответствие двух времён, может быть громадной. В-четвёртых, несмотря на эту только что обнаруженную разницу во времени, зарегистрированном в двух разных системах отсчёта, и несмотря на давно уже известную разницу в пространственном расстоянии между событиями в разных системах отсчёта (Δ𝑥 ≠ Δ𝑥' = 0), существует тем не менее величина, действительно равная в лабораторной системе отсчёта тем же двум метрам промежутка светового времени между событиями 𝐴 и 𝐵, которые были зарегистрированы в системе отсчёта ракеты. Эта величина — интервал

(Интервал)

=

(

Δ

𝑡)² - (

Δ

𝑥)²

.

У ракеты может быть очень большая скорость, и тогда Δ𝑥 тоже будет очень большим. Но и Δ𝑡 в этом случае будет очень большим. Более того, величина Δ𝑡 оказывается в точности «подогнанной» к величине Δ𝑥, так что выражение (Δ𝑡)² - (Δ𝑥)² равно (2 м)² вне зависимости от того, чему именно равны порознь Δ𝑥 и Δ𝑡.

Все четыре замечательные идеи частной теории относительности иллюстрируются одной и той же диаграммой

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука