Читаем Физика пространства - времени полностью

Все перечисленные отношения можно увидеть, взглянув на рис. 13, а. Длина гипотенузы первого прямоугольного треугольника равна t/2 а его основание имеет длину x/2. Утверждение, что выражение (t)^2 - (x)^2 обладает универсальной величиной (или, иначе, что (t/2)^2 - (x/2)^2 обладает универсальной величиной), значит лишь, что высота этого прямоугольного треугольника строго фиксирована (равна на нашей диаграмме 1 м), с какой бы скоростью ни летела ракета. Но что именно лежало в основе доказательства того, что (t)^2 - (x)^2 равняется (2 м)^2 независимо от скорости полёта ракеты? В основе лежал принцип относительности, согласно которому законы физики одинаковы во всех инерциальных системах отсчёта. Мы воспользовались здесь этим принципом двумя совершенно различными способами. Во-первых, мы вывели из него заключение, что длины, перпендикулярные направлению относительного движения систем, получаются одинаковыми при измерении в этих системах (лабораторной системе и системе отсчёта ракеты). В противном случае одну систему было бы можно отличить от другой по более коротким поперечным масштабам. Во-вторых, из принципа относительности мы заключили, что скорость света должна быть одинаковой как в лабораторной системе отсчёта, так и в системе ракеты (этот вывод подтверждается экспериментом Кеннеди — Торндайка). А если эта скорость одинакова, то из факта большей длины траектории световой вспышки в лабораторной системе (сумма длин гипотенуз двух треугольников), чем в системе отсчёта ракеты, где свет совершает простое движение взад и вперёд (сумма высот двух треугольников: 1 м вверх и столько же вниз), мы непосредственно заключаем, что время между событиями A и B в лабораторной системе больше, чем в системе отсчёта ракеты.

Короче говоря, один элементарный треугольник на рис. 13, а изображает сразу 4 замечательные идеи, лежащие в основе всей частной теории относительности: инвариантность длин, поперечных движению; инвариантность величины скорости света; зависимость пространственной и временно'й координат от выбора системы отсчёта; инвариантность интервала.

Парадоксально ли различие между промежутками времени, прошедшего в лабораторной системе и в системе отсчёта ракеты?

Итак, в рис. 13, а вкратце содержится вся частная теория относительности в легко запоминающемся виде. Однако проделанный анализ приводит к тому, что на первый взгляд кажется нелепостью. Какой смысл можно вообще усмотреть в том, что промежуток времени между двумя событиями больше в лабораторной системе отсчёта, чем в системе ракеты? Разве мы не приводили уже в качестве довода, что «длины, перпендикулярные направлению относительного движения систем», одинаковы, «в противном случае одну из систем было бы можно отличить от другой по более коротким поперечным масштабам?» Как же быть в этом случае с разными промежутками времени в двух системах отсчёта? Разве это различие не даст возможности физически провести различие между той и другой системами? И разве возможность такого различия не исключена принципом относительности, утверждающим, что одна инерциальная система отсчёта нисколько не хуже другой?

Сравнение относительности времени (Лоренц) с относительностью выбора направления на «север» (Эвклид)

Рис. 14. Удалённость точки B от точки A по координате «север—юг» («северное склонение B относительно A») зависит от выбора направления на север.

Чтобы ответить на эти вопросы, вернёмся к притче о землемерах. Возьмём точку B на рис. 14. Она расположена на 1 м прямо к северу от другой точки A согласно построениям ночного землемера (определение направления на север по Полярной звезде). Рассмотрим теперь положение точки B с позиций дневного землемера (ориентация на север по магнитной стрелке). Будет ли разность координат y между A и B (на языке землемеров — северное склонение) также равна 1 м в дневной системе? Нет, y здесь меньше, чем 1 м! Почему же? Дело в том, что высота (y) прямоугольного треугольника короче, чем его гипотенуза (1 м). Значит ли это, что правила триангуляции в дневной системе координат отличаются от этих правил в ночной системе координат? Конечно, нет! Точно так же нет дефектов в конструкции и ходе лабораторных часов, на которые можно было бы списать большую длительность промежутка времени AB. Это «расхождение» в показаниях лабораторных часов и часов на ракете обусловлено лишь самой природой геометрии пространства-времени. Так уж устроен мир! В табл. 6 проведена параллель между геометрией пространства-времени по Лоренцу и эвклидовой геометрией мира землемеров.

Таблица 6.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука