Скорость колеблющейся точки также меняется по закону синуса. К такому заключению нас приведет то же рассуждение о движении тени грузика, описывающего окружность. Скорость этого грузика есть вектор неизменной длины
Обратим внимание на то, что в формуле для определения величины смещения отсчет времени ведется от среднего положения, а в формуле скорости – от крайнего положения. Смещение маятника равно нулю при среднем положении грузика, а скорость колебания – при крайнем положении.
Между амплитудой скорости колебания
Таким образом,
Сила и потенциальная энергия при колебании
При всяком колебании около положения равновесия на тело действует сила, «желающая» возвратить тело в положение равновесия. Когда точка удаляется от положения равновесия, сила замедляет движение, когда точка приближается к этому положению, сила ускоряет движение.
Проследим за этой силой на примере маятника. Грузик маятника находится под действием силы тяжести и силы натяжения нити. Разложим силу тяжести на две составляющие – одну, направленную вдоль нити, и другую, идущую перпендикулярно к ней по касательной к траектории. Для движения существенна лишь касательная составляющая силы тяжести. Она-то и есть в этом случае возвращающая сила. Что касается силы, направленной вдоль нити, то она уравновешивается противодействием со стороны гвоздика, на котором висит маятник, и принимать ее в расчет надо лишь тогда, когда нас интересует вопрос, выдержит ли нить тяжесть колеблющегося тела.
Обозначим через
Величина
Период колебания маятника был выражен через его длину. Такая формула годится лишь для маятника. Но мы можем выразить период свободных колебаний через постоянную возвращающей силы
Эта формула распространяется на все случаи колебания, так как любое свободное колебание происходит под действием возвращающей силы.
Выразим теперь потенциальную энергию маятника через смещение из положения равновесия
Но, как видно из рисунка,
Потенциальная энергия колеблющегося тела пропорциональна квадрату смещения тела из положения равновесия.
Проверим правильность выведенной формулы. Потеря потенциальной энергии должна равняться работе возвращающей силы. Рассмотрим два положения тела –
Но разность квадратов можно записать как произведение суммы на разность. Значит,
Но
Наша формула привела нас к правильному результату: потеря потенциальной энергии равна произведенной работе.
Колебание пружин