Если летающий снаряд будет отправлен на большое расстояние без учета силы Кориолиса, то он значительно отклонится от курса. Этот эффект велик не потому, что велика сила (для снаряда в 10 т, имеющего скорость 1000 км/ч, сила Кориолиса будет около 25 кГ), а потому, что сила действует непрерывно длительное время.
Конечно, влияние ветра на неуправляемый снаряд может быть не менее значительным. Поправка к курсу, которая дается пилотом, обусловлена действием ветра, эффектом Кориолиса и несовершенством самолета или самолета-снаряда.
Какие специалисты, кроме авиаторов и артиллеристов, должны принять эффект Кориолиса во внимание? К ним относятся, как ни странно, и железнодорожники. На железной дороге один рельс под действием кориолисовой силы истирается изнутри заметно больше другого. Нам ясно, какой именно: в северном полушарии это будет правый рельс (по ходу движения), в южном – левый. Лишены хлопот по этому поводу лишь железнодорожники экваториальных стран.
Размытие правых берегов в северном полушарии объясняется точно так же, как и истирание рельсов.
Отклонения русла во многом связаны с действием силы Кориолиса. Оказывается, реки северного полушария обходят препятствия с правой стороны.
Известно, что в район пониженного давления направляются потоки воздуха. Но почему такой ветер называется циклоном? Ведь корень этого слова указывает на круговое (циклическое) движение.
Так оно и есть – в районе пониженного давления возникает круговое движение воздушных масс (рис. 28). Причина заключается в действии силы Кориолиса. В северном полушарии все устремляющиеся к месту пониженного давления воздушные потоки отклоняются вправо по своему движению. Посмотрите на рис. 29 – вы видите, что это приводит к отклонению дующих в обоих полушариях от тропиков к экватору ветров (пассатов) к западу.
Почему же такая небольшая сила играет такую большую роль в движении воздушных масс?
Это объясняется незначительностью сил трения. Воздух легко подвижен, и малая, но постоянно действующая сила приводит к важным следствиям.
IV. Законы сохранения
Отдача
Даже тот, кто не был на войне, знает, что при выстреле из орудия его ствол резко отходит назад. При стрельбе из ружья происходит отдача в плечо. Но и не прибегая к огнестрельному оружию, можно ознакомиться с явлением отдачи. Налейте в пробирку воды, заткните ее пробкой и подвесьте пробирку на двух нитках в горизонтальном положении (рис. 30). Теперь поднесите к стеклу горелку – вода начнет кипеть, и минуты через две пробка с шумом вылетит в одну сторону, а пробирка отклонится в противоположную.
Сила, которая выбросила пробку из пробирки, это давление пара. И сила, отклонившая пробирку, – тоже давление пара. Оба движения возникли под действием одной и той же силы. То же самое происходит и при выстреле, только там действует не пар, а пороховые газы.
Явление отдачи необходимо следует из правила равенства действия и противодействия. Если пар действует на пробку, то и пробка действует на пар в обратную сторону, а пар передает это противодействие пробирке.
Но, может быть, вам приходит в голову возражение: разве может одна и та же сила приводить к столь разным следствиям? Ружье лишь слегка отходит обратно, а пуля летит далеко. Мы надеемся, однако, что такое возражение не пришло в голову читателю. Конечно, одинаковые силы могут приводить к разным следствиям: ведь ускорение, которое получает тело (а это и есть следствие действия силы), обратно пропорционально массе этого тела. Ускорение одного из тел (снаряда, пули, пробки) мы должны записать в виде
Это значит, что ускорение, которое получит пушка при откате, будет во столько раз меньше ускорения снаряда, во сколько раз пушка весит больше, чем снаряд.
Ускорение пули, а также и ружья при отдаче, длится до тех пор, пока пуля движется в дуле ружья. Обозначим это время буквой
Скорости, с которыми разлетаются тела после взаимодействия, будут обратно пропорциональны массам этих тел.
Если вспомнить векторный характер скорости, то последнее соотношение можно переписать так:
Наконец, перепишем равенство еще раз – перенесем произведения масс на скорости в одну сторону равенства:
Закон сохранения импульса