Всё, с отражением практически разобрались ("практически" потому, что остался ещё один штришок, но о нём лучше всего писать в преломлении). Теперь будем ломать лучи света о воду и дым - в пример обожают приводить весло лодки, которое выглядит изогнутым, когда погружено в воду, или "дрожащий" воздух рядом с горящим костром. Тут всё завязано на "показателе преломления". Абсолютный показатель преломления показывает, во сколько раз скорость света в той или иной среде меньше, чем в пустоте - в вакууме, где свету точно ничто не помешает (n = c/v, c - скорость света в вакууме, v - скорость света в среде). Но по нему снова считать неудобно, поэтому ввели относительный показатель преломления, который тоже всегда будет постоянен: это отношение синуса угла падения к синусу угла преломления. Почему именно синусы, чёрт-те его знает - наверное, потому, что при падении под углом 0 (то бишь точно перпендикулярно - да, здесь угол тоже отсчитывается от такого же перпендикуляра, как и при отражении) луч не преломится вообще, а преломиться под углом 0 луч никак не сможет (синус нуля - ноль, и в обоих этих "крайних" случаях нулём будет либо числитель, либо знаменатель этой дроби синус/синус, что может привести к очередному делению на ноль, но на практике, как я только что написал, такого не бывает). Но какая-то часть света при преломлении отражается назад, а не проходит прямо. Если очень внимательно присмотреться к формуле sinальфа/sinбета = n21, то можно увидеть следующее: когда n21 меньше единицы (то есть луч выходит из оптически более плотной среды в менее плотную - например, из воды в воздух), то угол альфа может стать таким большим, что его синус будет больше, чем даже самый большой синус бета (единица), ещё и умноженный на относительный показатель преломления. Нет, это не деление на ноль, не конец света и не "временной парадокс" - это всего лишь означает, что свет, падающий под таким углом альфа или больше, не преломится вообще, а полностью отразится - даже несмотря на то, что преломиться вроде бы должен. Такое называют полным внутренним отражением.
Ну а если не ударяться в такие крайности и посмотреть, как свет обычно преломляется, то народ увидел - при преломлении через плоскопараллельную пластину (например, оконное стекло) изображение не искажается, а только чуть-чуть "сдвигается". При преломлении через треугольную призму, имеющий больший показатель преломления, чем то, в чём она находится, лучи света будут отклоняться к основанию призмы. Но, конечно, самое главное в преломлении - это линза. В широком смысле это прозрачное для света тело, ограниченное двумя поверхностями. Обычно линза стеклянная, а поверхности имеют сферическую форму (круглые, проще говоря). Но для геометрии этого мало, потому что луч, идущий по "верху" или "низу" линзы, проходит меньшее расстояние, чем идущий посередине - по краям она худее, а посередине толще, и из-за этого лучики будут преломляться совсем не одинаково! Чтобы не морочить голову с такой разницей в расстоянии, решили эту линзу вытянуть до таких размеров, чтобы радиус кривизны (округлость) стал гораздо меньше, чем размер (высота) линзы. Тогда линзу можно считать тонкой, чертить как прямую с двумя стрелочками и также строить изображения.
Но тут поджидает ещё большая засада, чем с зеркалом. На первый взгляд, ход ни одного луча "просто так" не начертишь - надо знать и материал линзы, и угол, под которым луч падает. Но не всё так плохо: обычные линзы могут либо "стягивать в охапку" все падающие на неё лучи, либо, наоборот, разваливать их на пучки. Первую линзу называют собирающей, вторую - рассеивающей. И у обеих есть свой фокус, как и у зеркала: у собирающей линзы в ней собираются лучи, а в рассеивающей из этой воображаемой точки рассеиваются лучи (то есть там пересекаются их продолжения). Я специально опустил слово "все": тут есть ещё одна маленькая хитрость, о ней как раз дальше.