Если проводить дальнейшую аналогию с механикой, то в идеале электрические колебания - свободные. Но мир неидеален, и часть энергии катушки или конденсатора уходит всё в то же вездесущее тепло - то есть колебания со временем затухают. Соответственно, в идеале их придётся время от времени поддерживать - это будут вынужденные колебания. Дак вот, и у таких вынужденных колебаний тоже есть резонанс. Определяется он так же, как и в механике - увеличение амплитуды вынужденных колебаний в контуре при совпадении собственной частоты этих колебаний с частотой колебаний внешних, которые воздействуют. А теперь всё это же переведу на русский язык: есть радиоприёмник. У него внутри запрятан колебательный контур; двигая подстраивающий ползунок на радиоприёмнике, мы как бы сдвигаем или раздвигаем обкладки конденсатора, меняя его ёмкость (и тем самым меняем частоту колебательного контура, "подстраивая" её). Когда частота принимаемых радиосигналов (не видимых нам) становится близка к частоте подстраиваемого нами контура, мы начинаем слышать тихие звуки с помехами. Если покрутить ручку ещё, то звук станет очень чётким и будет гораздо громче. Это и будет означать, что мы вошли в резонанс - частота контура стала равна частоте радиосигнала, и итоговые колебания, в конце концов превращающиеся в звук, стали гораздо больше по амплитуде (звук стал громче). Именно на принципе резонанса построены приёмники радиосвязи. Частота, при которой такое происходит, называется резонансной, она равна 1/корень квадратный из (L*c), и что любопытно - оба реактивных сопротивления при резонансе оказываются равны! То есть Xc становится равно XL - собственно, из этого и получается, что резонансную частоту можно посчитать при помощи корня.
Ну хорошо, мы все такие радостные, приняли сигнал - а сам сигнал-то откуда взялся, явно не из космоса прилетел? (Хотя бывает, что именно радиоприёмником удаётся поймать какой-нибудь сигнал странного происхождения, о чём потом пишут в газетах.) А это скажем спасибо электромагнитным волнам, собственно, благодаря которым и получается передавать сигналы по воздуху без проводов. Потому что, в отличие от волн звуковых, они в воздухе почти не затухают и могут лететь долго-долго. Вот волны уже как колебания тока и напряжения не представишь, тут обычно рисуют умную картинку с изменяющимися по синусу векторами E и B, причём B колбасит "по полу" (горизонтально), а E - "по стене" (вертикально), то бишь они обе колеблются перпендикулярно друг другу. Расстояние между максимумами любой из этих синусоид (они и так обе одинаковые) будет длиной волны (лямбда). Как возникает волна, сообразить просто: нужно заставить или одно, или другое поле меняться по синусу. В итоге изменяющееся одно поле потащит за собой другое, другое схватит за руку первое, и так они и будут идти рука об руку до бесконечности. (Нет, электромагнитная волна тоже умеет затухать и ослабевать, но местами делает это гораздо слабее, чем волна механическая.) Скорость распространения этой волны в воздухе примерно равна скорости света - 300 тысяч километров в секунду, или 3*10^8 м/с. Эта скорость даже обозначается своей буквой - c. Да, опять с маленькая, не перепутать бы её с ёмкостью или теплоёмкостью. (Но редко бывает так, чтобы в одной задаче фигурировали хотя бы две из таких "c", а чтоб все три сразу - такого, наверное, вообще нет.)