Но наиболее перспективным на данный момент кандидатом представляется солнечная и водородная энергетика, т. е. энергия, получаемая на базе возобновляемых технологий. Это собственно солнечная энергия, энергия ветра, энергия гидроэлектростанций и водорода.
В настоящее время электричество, получаемое с солнечных батарей, стоит в несколько раз дороже угольного. Но технический прогресс обеспечивает стабильное падение цен на электричество из возобновляемых источников, а цены на ископаемое топливо столь же стабильно растут. По оценкам ученых, через 10–15 лет две кривые пересекутся. Остальное сделают рыночные механизмы.
Энергия ветра
В ближайшей перспективе лучше всего выглядят такие возобновляемые источники, как энергия ветра. Мировые ветрогенерирующие мощности выросли с 17 ГВт в 2000 г. до 121 ГВт в 2008 г.[13]Энергия ветра, которую когда-то практически не брали в расчет, приобретает все большее значение. Технический прогресс в области производства ветряных турбин увеличил эффективность и производительность ветряных электростанций, и теперь ветроэнергетика — один из наиболее быстро растущих секторов энергетического рынка.
Сегодняшние ветроэлектростанции мало напоминают ветряные мельницы, крутившие колеса мельниц и заводиков в конце XIX в. Один ветрогенератор может давать 5 МВт электроэнергии — достаточно для небольшой деревушки. При этом он безопасен и не загрязняет окружающую среду. Ветряная турбина снабжена огромными обтекаемыми лопастями длиной около 30 м, вращающимися почти без трения. Ветряные турбины производят электричество так же, как турбины гидроэлектростанций или, к примеру, велосипедные генераторы. Ветер вращает лопасти, а вместе с ними и магнит внутри катушки. Вращающееся магнитное поле гонит электроны по виткам катушки, создавая в электросети ток. Большая ветроэлектростанция, включающая 100 таких генераторов, может производить 500 МВт, что вполне сравнимо с 1000 МВт, производимых угольной станцией или одним блоком атомной станции.
Несколько последних десятилетий лидерство в развитии ветроэнергетических технологий принадлежало Европе. Однако не так давно США обогнали в этом Европу. В 2009 г. в США было лишь 28 ГВт установленной мощности ветрогенераторов, но в одном Техасе их имеется на 8 ГВт и строятся мощности еще на 1 ГВт, а планируется построить еще больше. Если все пойдет по плану, Техас будет получать от ветра 50 ГВт электроэнергии — более чем достаточно для штата с населением 24 млн человек.
Но Китай скоро превзойдет США в этой области. По программе «Ветроэнергетическая база» там будет построено шесть ветроэлектростанций суммарной мощностью 127 ГВт.
Несмотря на то что энергия ветра выглядит все более привлекательно и в ближайшее время производство ветряного электричества, несомненно, будет расти, обеспечить таким образом энергией все человечество невозможно. В лучшем случае энергия ветра займет свое ограниченное место в сложной и неоднородной мировой энергетической системе. У ветроэнергетики есть несколько серьезных недостатков. Энергия в ней может вырабатываться лишь время от времени, когда дует ветер, и лишь в некоторых особенно ветреных регионах мира. Кроме того, из-за потерь при передаче электроэнергии ветроэлектростанции приходится размещать вблизи крупных городов, что еще больше ограничивает их возможности.
А вот и Солнце!
Если разобраться, вся энергия на Земле исходит от Солнца. Даже нефть и уголь представляют собой в некотором смысле концентрированный солнечный свет, энергию, поглощенную миллионы лет назад растениями и животными. Вследствие этого количество энергии, содержащееся в литре бензина, гораздо больше, чем мы можем запасти в электрическом аккумуляторе. С этой фундаментальной проблемой сталкивался еще Эдисон в прошлом веке, и она же стоит перед человечеством сегодня.
Солнечные батареи напрямую преобразуют солнечное излучение в электричество. (В основе этого процесса лежит явление фотоэффекта, которое еще в 1905 г. объяснил Эйнштейн. Когда частица света — фотон — падает на металл, она выбивает из атомной решетки электрон, порождая таким образом электрический ток.)
Однако солнечные батареи неэффективны. Даже теперь, после десятков лет непрерывных усилий ученых и инженеров, их коэффициент полезного действия завис на отметке около 15%. В настоящее время исследования идут в двух направлениях. Первое — увеличение эффективности солнечных батарей, что является чрезвычайно сложной технической задачей. Второе — уменьшение стоимости их производства и установки, а также строительства солнечных электростанций.
К примеру, покрыв всю территорию штата Аризона фотоэлектрическими батареями, можно было бы полностью удовлетворить потребность США в электричестве. Понятно, что это непрактично. Тем не менее крупные участки земли на территории пустыни Сахара неожиданно подскочили в цене и стали пользоваться спросом; инвесторы уже начали строительство крупных солнечных электростанций в этой пустыне для обслуживания европейских потребителей.