Читаем Физика без формул полностью

Если видимое световое излучение и гамма-лучи — электромагнитные «сородичи», то отличает их всего лишь длина волны. У света она мала, у гамма-лучей — еще в тысячу, миллион раз меньше. Выстраивается такая зависимость; чем меньше длина волны излучения, или, соответственно, чем больше его частота, тем больше проникающая способность, тем больше проявляется им свойств уже не волны, а частицы.

Можно сказать так — гамма-лучи представляют собой поток как бы сгустков энергии, очень похожих на летящие со скоростью света микроскопические снаряды.

С одной стороны, их научились применять для обнаружения дефектов в металлах. В медицине их используют для диагностики и для лечения злокачественных опухолей. С другой стороны, это излучение в больших дозах, как всякая радиоактивность, очень опасно, и для защиты от него принимают специальные меры, — скажем, в лабораториях физиков и на атомных электростанциях.

<p>Внутри волны — частица, внутри частицы — волна</p>

Говорят, что на рубеже веков чаще происходят странные и удивительные события. Возможно, в эти времена и людям в голову приходят всякие нестандартные идеи. Во всяком случае, именно в 1900 году немецкого физика Макса Планка посетила ошеломляющая мысль.

Макс Планк (1858–1947) — немецкий физик-теоретик. Работал в области термодинамики, теории теплового излучения, теории относительности. Основная научная заслуга — создание квантовой теории, пришедшей на смену классической физике, не дающей объяснений на атомном и молекулярном уровне.

Ученый разбирался с вопросом об испускании излучения нагретыми телами. Задача, стоящая перед ним, считалась трудной, но не такой, чтобы привести к революционным переменам в науке. Более того, Планка незадолго до этого пытались отговорить от занятий физикой, поскольку считали, что она практически завершена.

Однако, как Планк ни бился над задачей, уже известные методы никак не позволяли ее решить. И вот тут-то он сообразил, что излучение, испускаемое телом, идет не непрерывным потоком, как льется вода, а разбегается малюсенькими порциями. Назвал он эти порции квантами.

Казалось бы, возродилась идея Исаака Ньютона о том, что свет — это поток частиц-корпускул. Но планковские частички-кванты представляли собой нечто особенное. Они обладали различной энергией, и она зависела от такой волновой характеристики, как… частота излучения. Вот это и было неожиданным выводом, парадоксом — вроде бы частица, а в ней словно бы заключена волна.

Сам Планк был поражен созданием такого «кентавра». И неизвестно, как бы дальше развивались события в физике, если бы с помощью этой идеи не нашли объяснения многие экспериментальные факты. Теория Планка получала все больше подтверждений и стала именоваться квантовой теорией. Она во многом повлияла на облик современной науки.

<p>Как свет «выдергивает» электроны?</p>

Как только родилась идея квантов — частиц излучения, испускаемого и поглощаемого тела-ми, — ее тут же взяли на вооружение многие выдающиеся ученые. Например, в 1905 году немецкий физик Альберт Эйнштейн применил теорию квантов к одному очень интересному явлению — фотоэффекту.

Исследовать этот эффект начали еще в 1887 году. А годом позже явление было детально изучено русским физиком Александром Григорьевичем Столетовым. Состояло оно в том, что из металлической пластины при освещении вылетали электроны. Опытным путем были установлены законы фотоэффекта, но причины происходящего выявить не удалось.

Александр Григорьевич Столетов (1839–1896) — российский физик. Предложил важные методы магнитных измерений, изучал газовый разряд. Мировую известность приобрел как исследователь фотоэффекта, установивший его законы. Создал первый фотоэлемент и применил его на практике.

И лишь идея о квантах света, как показал Эйнштейн, поставила все на свои места. Законы получили твердую опору. Выяснилось, что каждая частичка света приносит с собой определенную порцию энергии. А тратится эта энергия на то, чтобы вырвать электрон из металла и сообщить ему энергию движения, то есть кинетическую энергию. Поэтому чем больше частота излучения, тем больше энергия света, тем быстрее выбегают из металла электроны. Из-за этого их энергия выше при облучении пластины фиолетовым светом, нежели красным.

Перейти на страницу:

Все книги серии Простая наука для детей

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука