В своих опытах Георг Ом использовал интересный источник тока. Две проволочки — медная и висмутовая — местами своего соприкосновения погружались в кипяток и в лед. Со времен Гальвани было известно, что при контактах разнородных металлов может появиться электричество. А если, как это делал Ом, поддерживать два таких контакта при постоянных, но разных температурах, то по проволочкам потечет равномерный ток. Вот такой источник, а называется он термоэлемент, очень помог Ому.
Эффективность этого элемента, к сожалению, довольно мала. Однако возможность перевести тепловую энергию в электрическую подсказала и другие, как бы встречные идеи.
Сейчас покажется очевидным, что электричество доставляет нам в дома практически всю необходимую энергию. А ну-ка, пройдемся по своей квартире. Кроме батарей центрального отопления, пожалуй, все остальные нагревательные приборы «питаются» электричеством. У многих на кухнях стоят электроплиты. Подогреть воду зачастую предпочитают в электрическом чайнике и электросамоваре. Бывает, что в холодные дни, когда отключают на ремонт водяное отопление, вы призываете на помощь электрокамины.
Не удивляйтесь, если вы, даже включив свет, не обнаружите в доме еще несколько источников тепла, потребляющих электричество. Но вы сразу догадаетесь, о чем речь, когда поспешите выкрутить из патрона перегоревшую лампочку. Обожглись? Так что же, разве лампочка — не источник тепла? Увы, ваше предположение о том, что она — источник света, верно лишь отчасти. На излучение света лампой тратится лишь несколько процентов электроэнергии. Все остальное — тепловые потери.
Таким образом, возможность перехода электрической энергии в тепловую оказалась для нас очень важной. Иногда, как в нагревателях, хотелось бы тепла получить побольше, а вот в примере с лампочкой — поменьше.
Ток течет — заряд сохраняется
Что же требуется для того, чтобы тек электрический ток? Какие условия обязательно должны выполняться? Первым делом, разумеется, должны быть в наличии носители заряда — заряженные частички, к примеру, электроны. Второе условие: необходима сила, которая будет их «тащить» вдоль проводника.
Но почему мы говорим только об отрицательно заряженных электронах? Ведь если включить ток в электрической цепи, то выяснится, что полный заряд всех ее элементов может быть равным нулю. Тогда закон сохранения заряда подскажет нам, что кроме электронов в нашей цепочке скрывается ровно столько же зарядов положительных. И правда, прошло не так уж много времени после открытия электрона, как были обнаружены его товарищи-напарники. Их назвали протонами, они в пару тысяч раз помассивнее электрона, а вот заряд имеют точно такой же, но положительный. Комбинации этих двух видов заряженных частиц обеспечивают протекание тока во всех известных случаях, хотя ясно, что легоньким электронам это удается лучше.
А вот другой закон сохранения — энергии — позволил «разложить по полочкам» все ее переходы внутри электрической цепи, какой бы сложной она ни была. Судите сами. Что подает энергию в цепь? Батарейка, аккумулятор, генератор тока на электростанции. Все они совершают работу, преобразуя в электрическую иные виды энергии, скажем, химическую или механическую. А дальше все происходит, как в любой известной нам машине. Часть электрической энергии идет на нужный нам нагрев, положим, воды в электросамоваре или воздуха в комнате, либо — на механическую работу, как в электрокофемолке или пылесосе. И, конечно, неминуемы потери, которые, как всегда, учтет коэффициент полезного действия нашего устройства.
Закон сохранения энергии в применении к электрическим цепям был установлен двумя физиками: английским — Джеймсом Джоулем и российским — Эмилием Христиановичем Ленцем немногим более 170 лет назад.
Легко ли изобрести лампочку?
Отчего же все-таки при протекании электрического тока проводники нагреваются? И даже могут излучать свет? Многие десятилетия нагревательные и осветительные приборы создавали подбором, наблюдая и описывая лишь внешние эффекты. Вот, например, этот металл или угольный стерженек раскаляется ярче, чем какой-то другой. А не попробовать ли еще какой-нибудь — вдруг будет лучше? Понятно, что такой метод — метод проб и ошибок — был не очень продуктивным. С другой стороны, отдадим дань упорству и настойчивости десятков изобретателей, которые шли этим нелегким путем.
Хорошая иллюстрация здесь — история создания электрической лампочки накаливания. Русский электротехник Александр Николаевич Лодыгин затратил множество усилий, перебирая различные материалы для нагреваемого стерженька. Постепенно он дошел до идеи накалять угольный стерженек в закупоренной стеклянной колбе. Первые лампы горели около получаса. Откачав воздух из колбы, Лодыгин довел время накала до нескольких часов. Даже такими несовершенными лампами ему удалось осветить в 1873 году одну из улиц Петербурга.