УРАВНЕНИЯ МАКСВЕЛЛА
§ 1. Уравнения Максвелла
§ 2. Что дает добавка
§ 3. Все о классической физике
§ 4. Передвигающееся поле
§ 5. Скорость света
§ 6. Решение уравнений Максвелла; потенциалы и волновое уравнение
§ 1. Уравнения Максвелла
В этой главе мы вернемся к полной системе из четырех уравнений Максвелла, которые мы приняли как отправной пункт в гл. 1 (вып. 5). , До сих пор мы изучали уравнения Максвелла небольшими частями, кусочками; теперь пора уже прибавить последнюю часть и соединить их все воедино. Тогда мы будем иметь полное и точное описание электромагнитных полей, которые могут изменяться со временем произвольным образом. Все сказанное в этой главе, если даже оно и будет противоречить чему-то сказанному ранее, правильно, а то, что говорилось ранее в этих случаях, неверно, потому что все высказанное ранее применялось к таким частным случаям, как, скажем, случаи постоянного тока или фиксированных зарядов. Хотя всякий раз, когда мы записывали уравнение, мы весьма старательно указывали ограничения, легко позабыть все эти оговорки и слишком хорошо заучить ошибочные уравнения. Теперь мы можем изложить всю истину, без всяких ограничений (или почти без них).
Все уравнения Максвелла записаны в табл. 18.1 как словесно, так и в математических символах. Тот факт, что слова эквивалентны уравнениям, должен быть сейчас вам уже знаком — вы должны уметь переводить одну форму в другую и обратно.
Первое уравнение — дивергенция Е равна плотности заряда, деленной на eо,— правильно всегда. Закон Гаусса справедлив всегда как в динамических, так и в статических полях. Поток Е через любую замкнутую поверхность пропорционален заключенному внутри заряду. Третье уравнение — соответствующий общий закон для магнитных полей.
Уравнения Максвелла
(Поток Е через замкнутую поверхность) = (Заряд внутри нее)/e0
(Интеграл от Е по замкнутому контуру) = -d/dt
(Поток В через замкнутую поверхность) = 0
с2 (Интеграл от В по контуру)=(Ток в контуре) /e0 + d/dt(Поток Е сквозь контур)
(Поток заряда через замкнутую поверхность) =-d/dt(Заряд внутри нее)
Закон силы
F = q(E+vXB)
Закон движения
(Закон Ньютона, исправленный Эйнштейном}
Гравитация
Поскольку магнитных зарядов нет, поток В через любую замкнутую поверхность всегда равен нулю. Второе уравнение СXE=-
До появления работы Максвелла известные законы электричества и магнетизма были такими же, как те, что мы изучали в гл. 3—14 (вып. 5) и гл. 15—17. В частности, уравнение для магнитного поля постоянных токов было известно только в виде
(18.1)
Максвелл начал с рассмотрения этих известных законов и выразил их в виде дифференциальных уравнений, так же как мы поступили здесь. (Хотя символ С еще не был придуман, впервые, в основном благодаря Максвеллу, стала очевидной важность таких комбинаций производных, которые мы сегодня называем ротором и дивергенцией.) Максвелл тогда заметил, что в уравнении (18.1) есть нечто странное. Если взять дивергенцию от этого уравнения, то левая сторона обратится в нуль, потому что дивергенция ротора всегда равна нулю. Таким образом, это уравнение требует, чтобы дивергенция j также была равна нулю. Но если дивергенция j равна нулю, то полный ток через любую замкнутую поверхность тоже равен нулю.
Полный ток через замкнутую поверхность равен уменьшению заряда внутри этой поверхности. Он наверняка не может быть всегда равен нулю, так как мы знаем, что заряды могут перемещаться из одного места в другое. Уравнение
(18.2)