Читаем Feynmann 4 полностью

Используя это обстоятельство, легко найти С=Ц(m/2pkT).

Поскольку скорость и импульс пропорциональны, можно утверждать, что распределение молекул по импульсам, отне­сенное к единице импульсной шкалы, также пропорционально ехр(-к.э./kT). Оказывается, что эта теорема верна также в теории относительности, если только формулировать ее в тер­минах импульсов, тогда как в терминах скоростей это уже не так; поэтому сформулируем все в терминах импульсов:

f(p)dp=ce-к.э./kTdp. (40.8)

Это значит, что мы установили, что вероятности, определяе­мые энергиями разного происхождения (и кинетической и по­тенциальной), в обоих случаях выражаются одинаково: ехр(-энергия/kT); таким образом, наша замечательная теорема приобрела форму, весьма удобную для запоминания.

Однако пока мы говорили только о «вертикальном» распре­делении скоростей. Но мы можем спросить, какова вероятность того, что молекула движется в другую сторону? Конечно, эти распределения связаны друг с другом и можно получить пол­ное распределение, исходя из какого-то одного, ведь полное распределение зависит только от квадрата величины скорости, а не от ее z-составляющей. Распределение по скоростям не должно зависеть от направления и определяться только функ­цией u2 — вероятностью величины скорости. Нам известно распределение z-составляющей, и мы хотим получить отсюда распределение других составляющих. В результате полное распределение по-прежнему пропорционально ехр(-к.э./kT), только теперь кинетическая энергия состоит из трех частей: mv2x/2, mv2y/2 и mv2z/2, суммируемых в показателе экспоненты. А можно записать это и в виде произведения:

f(vx,, vy, vz) dvx dvy dvz ~

Вы можете убедиться в том, что эта формула верна, ибо, во-первых, распределение зависит только от v2 и, во-вторых, ве­роятности данных vг получаются после интегрирования по всем vx и vy и это должно привести к (40.7). Но обоим этим тре­бованиям удовлетворяет только функция (40.9).

§ 5. Удельные теплоемкости газов

Посмотрим теперь, как можно проверить теорию и оценить, насколько хороша классическая теория газов. Мы уже гово­рили, что если Uвнутренняя энергия N молекул, то фор­мула pV=NkT=(g-1)U иногда и для некоторых газов может оказаться правильной. Мы знаем, что для одноатомного газа правая часть равна 2/3 кинетической энергии движения цен­тров масс атомов. В случае одноатомного газа кинетическая энергия равна внутренней энергии, поэтому g-1 == 2/з.

Но предположим, что мы столкнулись с более сложной молекулой, которая может вращаться и колебаться, и пред­положим (в классической механике это так), что энергии внут­ренних движений также пропорциональны kT. Поэтому при заданной температуре молекула, кроме кинетической энергии kT, имеет внутреннюю энергию колебания и вращения. Тогда полная энергия U включает не только кинетическую энергию, но и вра­щательную энергию и мы получаем другие значения у. Наилуч­ший способ измерения gэто измерение удельной теплоемкости, характеризующей изменение энергии при изменении темпера­туры. К этому способу мы еще вернемся, а пока предполо­жим, что нам удалось экспериментально определить g с по­мощью кривой PVg , соответствующей адиабатическому сжатию.

Попробуем вычислить g для ряда частных случаев. Прежде всего для одноатомных газов полная энергия U есть не что иное, как кинетическая энергия, и в этом случае, как мы уже знаем, g равно 5/3. В качестве примера двухатомных газов рассмотрим кислород, водород, пары иода и т. д. и предположим, что двух­атомный газ можно представить как собрание пар атомов, меж­ду которыми действуют силы, похожие на те, что изображены на фиг. 40.3. Можно также предположить, и оказывается, что это вполне законно, что при температурах; обычных для диатомных газов, пары атомов стремятся удалиться друг от друга на расстояние r0 (расстояние минимума потенциальной энергии). Если бы это было не так, и вероятность не очень сильно за­висела от удаления от равновесной конфигурации, то мы обна­ружили бы, что кислород есть смесь сравнимых количеств O2 и одиночных атомов кислорода. А мы знаем, что в кислороде при­сутствует очень мало одиночных атомов кислорода, а это озна­чает, что глубина потенциальной ямы значительно больше kT, и это как раз мы и предполагали. Но раз атомы, составляющие молекулу, прочно закреплены на расстоянии r0, то нам понадо­бится лишь часть потенциальной кривой вблизи минимума, которую в этом случае можно приближенно заменить параболой. Параболический потенциал соответствует гармоническому ос­циллятору, и, в самом деле, отличной моделью молекулы кисло­рода могут служить два соединенных пружинкой атома.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука