Читаем Feynmann 4 полностью

Одна теорема статистической механики вам уже известна. Согласно этой теореме, для любого движения при абсолютной темпера­туре Т средняя кинетическая энергия каждого независимого движения (каждой степени сво­боды) равна 1/2kT. После этого нам становится кое-что известно о среднем квадрате скорости атомов. Теперь нам необходимо узнать чуть побольше о координатах атомов, чтобы выяс­нить, много ли их находится при тепловом равновесии в той или иной точке пространства, а также немного подробнее изучить распре­деление атомов по скоростям. Хотя мы зна­ем, чему равен средний квадрат скорости, мы все же не можем ответить на вопрос, сколько атомов обладают скоростью, в три раза боль­шей, чем корень из среднего квадрата скорости, или скоростью, равной одной четверти корня из среднего квадрата скорости. А вдруг все атомы имеют одинаковую скорость?

Итак, вот два вопроса, на которые мы попытаемся дать ответ: 1) Как атомы располагаются в пространстве, когда на них действуют силы? 2) Каково распределение атомов по ско­ростям?

Заметим, что это два совершенно независимых вопроса и что распределение по скоростям всегда одинаково. Этого можно было ожидать после того, как мы выяснили, что средняя кине­тическая энергия степени свободы всегда равна 1/2kT, незави­симо от того, какие силы действуют на молекулы. Распределе­ние по скоростям молекул не зависит от сил, потому что силы не влияют на частоту столкновений.

Давайте начнем с примера распределения молекул в атмос­фере, подобной той, в которой мы живем, но без ветра или дру­гих каких-либо возмущений.

Предположим, что мы имеем дело с довольно высоким стол­бом газа, находящегося в тепловом равновесии (не так, как в настоящей атмосфере; в ней, как известно, по мере подъема вверх становится холоднее). Укажем здесь, что нарушение равновесия в случае разницы температур на разных высо­тах можно продемонстрировать, поместив в столб газа металли­ческий стержень так, что его концы соприкасаются с малень­кими шариками (фиг. 40.1).

Фиг. 40. 1. Равновесие в атмос­фере с постоянной температурой.

Давление на высоте h должно превосхо­дить давление на высоте h+dh на вес заключенного между этими уровнями газа. Стержень и шарики выравнивают температуру.

Нижние шарики, получая от мо­лекул газа энергию l/2kT, передают ее через стержень верхним шарикам и встряхивают их; верхние шарики в свою очередь будут встряхивать соприкасающиеся с ними наверху молекулы. В конце концов, конечно, температура на разных высотах гра­витационного поля станет одинаковой.

Нам предстоит найти закон, по которому происходит раз­режение атмосферы по мере подъема вверх, когда температура на всех высотах одинакова. Если N — полное число молекул в объеме V газа с давлением Р, то PV=NkT, или Р=nkT, где nчисло молекул в единичном объеме. Иначе говоря, если известно число молекул в единичном объеме, то известно и давление, и наоборот: давление и плотность пропорциональ­ны друг другу, ведь температура в нашем случае постоянна. Но давление не может быть постоянным: с уменьшением высоты оно должно возрастать, потому что нижнему слою приходится, так сказать, выдерживать вес всех расположенных сверху ато­мов. Теперь можно определить, как давление меняется с высо­той. Если на высоте h выделить площадку единичной площади, то на эту площадку снизу будет действовать сила, равная давле­нию Р. Если бы не было силы тяжести, то на площадку на вы­соте h+dh действовала бы сверху вниз точно такая же сила. Но в нашем случае это не так: действующая снизу сила должна превосходить силу, действующую сверху, на величину, равную весу газа, заключенного между слоями h и h+dh. На каждую молекулу действует сила тяжести mg, где g ускорение силы тяжести. В интересующем нас слое находится ndh молекул. Это приводит к такому дифференциальному уравнению: Ph+dh-Ph=dP=-mgndh. Поскольку Р=nkT, а Т—посто­янная, то можно избавиться или от Р, или от n. Исключим из уравнений Р; тогда получим

Это дифференциальное уравнение говорит нам, как убывает плотность по мере увеличения высоты.

Мы располагаем теперь дифференциальным уравнением для плотности частиц n, которая меняется с высотой, но ме­няется так, что производная плотности пропорциональна себе самой. Функция, производная которой пропорциональна себе самой,— это экспоненциальная функция и, значит, решение дифференциального уравнения имеет вид

n=n0e-mgh/kT. (40.1)

Здесь постоянная интегрирования n0плотность на высоте h=0 (которую можно задать произвольно); с высотой плот­ность экспоненциально убывает.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука