Читаем Feynmann 3 полностью

Вершины многоугольника лежат, конечно, на окружности, и чтобы легче было определить результирующую амплитуду, найдем радиус этой окружности. Пусть Q есть ее центр. Тогда угол OQS равен как раз фазе j (поскольку радиус QS образует с А2 такой же угол, как QO с a1). Следовательно, радиус r дол­жен удовлетворять равенству А = 2rsinj/2, откуда мы и на­ходим величину r. Далее, большой угол OQT равен nj; следо­вательно, AR=2rsinnj/2. Исключая из обоих равенств г, получаем

(30.2)

Таким образом, суммарная интенсивность оказывается равной

(30.3)

Проанализируем это выражение и обсудим вытекающие из него следствия. Прежде всего, положив n =1, получим, как и следовало ожидать, I = I0. Проверим формулу для n=2: с помощью соотношения sinj=2sin j/2cosj/2 сразу находим АR = 2Acosj/2, что совпадает с (29.12).

Мы вынуждены рассматривать сложение полей от многих источников потому, что в этом случае интенсивность в одном направлении получается много больше, чем в соседних, т. е. все побочные максимумы интенсивности оказываются гораздо меньше основного. Чтобы понять этот факт, начертим кривую соответствующую выражению (30.3) для больших n и j, близ­ких к нулю. Прежде всего, когда j точно равно нулю, мы полу­чаем отношение О/О, но фактически для бесконечно малых j отношение синусов равно n2, так как синус можно заменить его аргументом. Таким образом, максимум кривой в n2 раз больше интенсивности одного осциллятора. Этот результат легко по­нять, поскольку при нулевой разности фаз все n маленьких векторов складываются в один вектор, в n раз больший исход­ного, а интенсивность увеличивается в n2 раз.

С ростом фазы j отношение двух синусов падает и обращается в нуль в первый раз при nj/2 = p, поскольку sinp=0. Дру­гими словами, значение j=2p/n отвечает первому минимуму кривой (фиг. 30.2). С точки зрения векторов на фиг. 30.1 первый минимум возникает в том случае, когда стрелки векторов воз­вращаются в исходную точку, при этом полная разность фаз от первого до последнего осциллятора равна 2л.

Перейдем к следующему максимуму и покажем, что он дей­ствительно, как мы и ждали, много меньше первого. Для точ­ного определения положения максимума необходимо учитывать, что и числитель, и знаменатель в (30.3) оба меняются с измене­нием j. Мы не станем этого делать, поскольку при большом n sinj/2 меняется медленнее sinj/2 и условие sinj/2 =1 дает положение максимума с большой точностью. Макси­мум sin2nj/2 достигается при nj/2=Зp/2 или j= Зp/n. Это озна­чает, что стрелки векторов описывают полторы окружности.

Подставляя j=3p/n, получаем sin23p/2=l в числителе (30.3) (с этой целью и был выбран угол j) и sin23n/2n в знамена­теле. Для достаточно большого n можно заменить синус его аргументом: sin Зp/2n =3p/2n. Отсюда интенсивность во втором максимуме оказывается равной I=I0 (4n2/9p2). Но n2I0 — не что иное, как интенсивность в первом максимуме, т. е. интенсив­ность второго максимума получается равной 4/9p2 от максималь­ной, что составляет 0,047, или меньше 5%! Остальные макси­мумы, очевидно, будут еще меньше. Таким образом, возникает очень узкий основной максимум и очень слабые дополнительные максимумы по обе стороны от основного.

Фиг. 30.2. Зависимость интенсивности от фазово­го угла для большого числа осцилляторов с одинаковыми амплитудами.

Фиг. 30.3. Устройство из n одинаковых осцил­ляторов, расположенных на линии. Фаза колебания s-го осциллятора равна as=sa.

Можно показать, что площадь под кривой интенсивности, включая все максимумы, равна 2pnI0 и в два раза превышает площадь пунктирного прямоугольника на фиг. 30.2.

Посмотрим теперь, что дает формула (30.3) в приложении к разным случаям. Пусть источники расположены на одной ли­нии, как показано на фиг. 30.3. Всего имеется n источников на расстоянии d друг от друга, и сдвиг фазы между соседними источ­никами выбран равным а. Тогда для лучей, распространяющихся в заданном направлении Э, отсчитываемом от нормали, вследст­вие разности хода лучей от двух соседних источников возникает

дополнительный сдвиг фазы 2pd(1/l)sinq. Таким образом,

(30.4)

Рассмотрим сначала случай a=0. Все осцилляторы колеб­лются с одной фазой; требуется найти интенсивность их излуче­ния как функцию угла В. Подставим с этой целью j=kdsinq в формулу (30.3) и посмотрим, что получится в результате. Пре­жде всего, при j=0 возникает максимум. Значит, осцилляторы, колеблющиеся с одной фазой, дают мощное излучение в направ­лении 0 =0. Интересно узнать, где находится первый минимум.

Он возникает при j=2p/n; другими словами, первый мини­мум кривой интенсивности определяется из соотношения (2pd/l)sinq=2p/n. Сокращая на 2p, получаем

(30.5)

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука