Читаем Feynmann 1 полностью

Таким образом, из закона Ньютона мы вывели закон со­хранения импульса, а теперь давайте посмотрим, какие спе­цифические законы описывают соударение и рассеяние частиц. Однако для разнообразия, а также чтобы продемонстрировать типичные рассуждения, которыми мы часто пользуемся в фи­зике в других случаях, когда, скажем, не известны законы Ньютона и должен быть принят иной метод рассмотрения, да­вайте обсудим законы рассеяния и соударения с совершенно другой точки зрения. Мы будем исходить из принципа относи­тельности Галилея и в конце рассуждений придем к закону сохранения импульса.

Итак, начнем с утверждения, что законы природы не изме­няются от того, что мы движемся прямолинейно с некоторой скоростью или стоим на месте. Однако прежде чем обсуждать процессы, в которых два тела сталкиваются и слипаются или разлетаются в стороны, давайте рассмотрим случай, когда эти два тела связаны между собой пружинкой или чем-то в этом роде, а затем вдруг освобождаются и разлетаются под дей­ствием этой пружинки или, быть может, небольшого взрыва в разные стороны. Кроме того, рассмотрим движение только в одном направлении. Предположим сперва, что эти два тела совершенно одинаковы и расположены симметрично. Когда между ними произойдет взрыв, одно из них полетит направо с некоторой скоростью v. Тогда естественно, что другое полетит налево с той же самой скоростью v, поскольку оба тела подобны и нет никаких причин считать, что левая сторона окажется предпочтительнее правой. Итак, с телами должно происходить нечто симметричное. Этот пример показывает, насколько по­лезны рассуждения такого рода в различных задачах. Но они не всегда столь ясны, когда затуманены формулами.

Таким образом, первый результат нашего эксперимента — одинаковые тела имеют одинаковую скорость. Но предположим теперь, что тела сделаны из различного материала, скажем один из меди, а другой из алюминия, но массы их равны. Мы будем предполагать, что если проделать наш опыт с двумя равными массами, то несмотря на то, что тела не одинаковы, скорости их тем не менее будут равны. В этом месте мне могут возразить: «Но ведь вы можете сделать и обратное. Вам незачем было это предполагать. Вы можете определить массы как рав­ные, если они в нашем эксперименте приобретают одинаковую скорость». Давайте же примем это предложение и устроим не­большой взрыв между кусочком меди и очень большим куском алюминия, который настолько тяжел, что едва может быть сдвинут с места, тогда как медь стремительно отлетает. Это го­ворит о том, что алюминия слишком много. Уменьшим его ко­личество и оставим лишь совсем маленький кусочек. Если устроить взрыв снова, то отлетит уже алюминий, а медь почти не сдвинется. Значит, сейчас слишком мало алюминия. Очевид­но, что должно существовать какое-то промежуточное количе­ство, которое можно постепенно подбирать, пока скорости раз­лета не станут равными. Теперь мы можем сказать, что раз равны скорости этих кусков, то массы их мы тоже будем считать равными (т. е. фактически мы переворачиваем сделанное ранее утверждение, что равные массы будут иметь одинаковую ско­рость). Самое интересное здесь то, что физический закон пре­вращается просто в определение. Но тем не менее какой-то физический закон здесь все же есть, и если мы примем такое определение равенства масс, то этот закон можно найти сле­дующим образом.

Пусть из предыдущего эксперимента нам известно, что два куска вещества А и В (медь и алюминий) имеют равные массы. Возьмем теперь третье тело, скажем кусок золота, и выровняем его массу (точно так же, как это делалось раньше) с массой меди. Если теперь в нашем эксперименте заменить медь золо­том, то логически у нас нет никаких оснований утверждать, что эти массы (алюминия и золота) равны. Однако опыт пока­зывает, что такое равенство имеет место. Таким образом, опыт­ным путем мы обнаружили новый закон: если две массы порознь равны третьей (т. е. в нашем опыте они разлетаются с равными скоростями), то они равны между собой. (Этот закон вовсе не следует из подобного утверждения о величинах в математике; там оно просто постулируется.) Видите, как легко по неосто­рожности сделать безосновательное заключение. Утверждение, что массы равны, когда равны скорости,— это еще не опреде­ление; ведь при этом мы предполагаем справедливость матема­тических законов равенства, что в свою очередь приводит к предсказанию результатов некоторых экспериментов.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука