Рассмотрим проблему более абстрактно, без парохода или поезда. Ради простоты будем исследовать только движение по прямым линиям. У нас имеются твердый стержень со шкалой и хорошие часы. Твердый стержень для простого случая прямолинейного движения представляет собой систему координат, совершенно так же как ее представлял масштаб у башни в опыте Галилея. Всегда проще и лучше не обращать внимания на башни, стены, улицы и т. п., а мыслить систему координат в виде твердого стержня в случае прямолинейного движения или жесткой конструкции из трех взаимно перпендикулярных стержней — в случае произвольного движения в пространстве. Допустим, что мы имеем в простейшем случае две системы координат, т. е. два твердых стержня; положим один стержень на другой и назовем их соответственно «верхней» и «нижней» системой координат. Предположим, что обе системы координат движутся с определенной скоростью друг относительно друга, так что один стержень скользит вдоль другого. При этом лучше предположить, что оба стержня бесконечны по длине и имеют начальные точки, но не имеют конечных. Для обеих систем достаточно иметь одни часы, так как течение времени в них одинаково. В начальный момент наблюдения начальные точки обоих стержней совпадают. Положение материальной точки в этот момент характеризуется в обеих системах одним и тем же числом. Положение материальной точки совпадает с некоторой точкой на шкале стержня; таким образом, мы получаем число, определяющее положение этой материальной точки. Но если стержни движутся равномерно относительно друг друга, то числа, определяющие положение точки на обоих стержнях, будут через некоторое время, скажем через секунду, различны. Рассмотрим материальную точку, покоящуюся на верхнем стержне (рис. 60). Число, определяющее ее положение в верхней системе координат, не изменяется со временем. Но соответствующее число на нижнем стержне будет изменяться. Вместо слов «число, определяющее положение точки» мы будем кратко говорить
Рис. 60
Необходимо отметить различие между определением положения точки и определением времени события. Каждый наблюдатель имеет свой стержень, который определяет его координатную систему, но часы у всех одни и те же. Время есть нечто «абсолютное» и течет одинаково для всех наблюдателей во всех системах.
Теперь другой пример. Человек прогуливается по палубе большого корабля со скоростью 3 км/ч. Это его скорость относительно корабля или, другими словами, скорость относительно системы координат, жестко связанной с кораблем. Если скорость корабля относительно берега 30 км/ч и если прямолинейные и равномерные движения корабля и человека имеют одно и то же направление, то скорость прогуливающегося человека по отношению к наблюдателю на берегу будет равна 33 км/ч, а по отношению к кораблю — 3 км/ч. Мы можем формулировать этот факт в более общем виде: скорость движущейся материальной точки относительно нижней системы координат равна скорости относительно верхней системы плюс или минус скорость верхней системы относительно нижней в зависимости от того, имеют ли скорости одинаковые направления или противоположные (рис. 61). Мы всегда, следовательно, можем перевести от одной системы координат к другой не только координаты, но и скорости, если нам известны относительные скорости обеих систем. Положения, или координаты, и скорости являются примерами величин, которые различаются в различных системах координат и которые связаны друг с другом определенными, в данном случае простыми,
Рис. 61
Но существуют величины, которые одинаковы в обеих системах и которые не нуждаются ни в каких законах преобразований. Возьмем не одну, а две определенные точки на верхнем стержне и рассмотрим расстояние между ними. Это расстояние является разностью координат обеих точек. Чтобы найти положения двух точек относительно различных систем координат, мы должны использовать законы преобразований. Но при образовании разности двух координат вклады, связанные с переходом в новую систему, компенсируются, как это ясно из рис. 62. Мы должны прибавить, а затем вычесть расстояние между началами обеих систем. Поэтому расстояние между двумя точками
Рис. 62