В теории Максвелла нет вещественных участников действия. Математические уравнения этой теории выражают законы, управляющие электромагнитным полем. Они не связывают, как это имеет место в законах Ньютона, два далеко разделенных события, они не связывают события
Изучение уравнений Максвелла с математической стороны показывает, что из них можно сделать новые и действительно неожиданные заключения, а всю теорию можно испытать на гораздо более высоком уровне, потому что теоретические следствия теперь имеют количественный характер и обосновываются всей цепью логических аргументов.
Представим себе опять идеализированный опыт. Небольшая электрически заряженная сфера под влиянием внешних сил вынуждена быстро и ритмично колебаться, подобно маятнику. Как, опираясь на знания об изменениях поля, которые уже есть у нас, будем мы описывать на языке поля всё, что при этом происходит?
Колебания заряда создает изменяющееся электрическое поле. Оно всегда сопровождается изменяющимся магнитным полем. Если поблизости расположен проводник, образующий замкнутую цепь, то изменяющееся магнитное поле будет сопровождаться электрическим током в цепи. Все это является лишь повторением известных фактов, но изучение уравнений Максвелла дает гораздо более глубокое проникновение в проблему колебания электрического заряда. С помощью математического вывода из уравнений Максвелла мы можем установить характер поля, окружающего колеблющийся заряд, его структуру вблизи и вдали от источника и его изменение со временем. Результатом такого вывода является представление об
Мы уже рассматривали различные типы волн. Когда в среде распространялись изменения плотности, мы имели продольную волну, вызванную пульсацией сферы. В желеобразной среде распространялись поперечные волны. В этом случае через среду передавалась деформация желеобразной массы, вызванная вращением сферы. Но какого же рода изменения распространяются теперь, в случае электромагнитной волны? Это изменения электромагнитного поля! Всякое изменение электрического поля создает магнитное поле; всякое изменение этого магнитного поля создает электрическое поле; всякое изменение электрического… и так далее. Так как поле несет энергию, все эти изменения, распространяющиеся в пространстве с определенной скоростью, образуют волну. Электрические и магнитные силовые линии всегда лежат, как это выведено теоретически, в плоскости, перпендикулярной к направлению распространения. Образовавшаяся волна является, следовательно, поперечной. Первоначальные черты картины поля, которую мы нарисовали на основе опытов Эрстеда и Фарадея, еще сохранены, но мы теперь устанавливаем, что поле имеет более глубокий смысл.
Электромагнитная волна распространяется в пустом пространстве. Таков новый вывод этой теории. Если колеблющийся заряд перестает двигаться, его поле становится электростатическим. Но серия волн, созданных колебанием заряда, продолжает распространяться. Волны ведут независимое существование, и история их изменений может быть прослежена так же, как и история любого другого материального объекта.
Мы приходим к заключению, что наша картина электромагнитной волны, распространяющейся с определенной скоростью в пространстве и изменяющейся со временем, вытекает из уравнений Максвелла только потому, что они описывают структуру электромагнитного поля в любой точке пространства и для любого момента времени.
Имеется другой очень важный вопрос. С какой скоростью распространяется электромагнитная волна в пространстве? Опираясь на некоторые данные, полученные из простых опытов, ничего общего не имеющих с действительным распространением волн, теория Максвелла дает ясный ответ: