Мы уже указывали на аналогию между колеблющейся струной, мембраной барабана, духовым инструментом или любым другим музыкальным инструментом, с одной стороны, и излучающим атомом — с другой. Имеется некоторое сходство и между математическими уравнениями, управляющими акустическими явлениями, и уравнениями, управляющими явлениями квантовой физики. Но опять физическое толкование величин, используемых в этих случаях, совершенно различно. Физические величины, описывающие колеблющуюся струну и излучающий атом, имеют совершенно разный смысл, несмотря на некоторое формальное сходство в уравнениях. В случае струны мы спрашиваем об отклонении произвольной точки от её нормального положения в произвольный момент времени. Зная форму колеблющейся струны в данный момент, мы знаем всё, что нам надо. Отклонение от нормального положения для любого другого момента можно рассчитать из математических уравнений для колеблющейся струны. Тот факт, что некоторое определённое отклонение от нормального положения соответствует каждой точке струны, выражается более строго следующим образом: в любой момент времени отклонение от нормального положения есть
Аналогично в случае электрона некоторая функция определена в любой точке пространства в любой момент времени. Назовём эту функцию
Таким образом, уравнения квантовой физики определяют волну вероятности так же, как уравнения Максвелла определяют электромагнитное поле, а гравитационные уравнения определяют поле тяготения. Законы квантовой физики суть опять-таки структурные законы. Но смысл физических понятий, определяемых этими уравнениями квантовой физики, гораздо более абстрактен, чем в случае электромагнитного поля и поля тяготения; они дают только математическое средство для разрешения вопросов статистического характера.
До сих пор мы рассматривали электрон в некотором внешнем поле. Если бы это был не электрон, наименьший из возможных зарядов, а некоторый заметный заряд, содержащий биллион электронов, мы могли бы отбросить всю квантовую теорию и трактовать задачу согласно нашей старой доквантовой физике. Говоря о токах в проводниках, о заряженных проводниках, об электромагнитных волнах, мы можем применять нашу старую простую физику, содержащуюся в уравнениях Максвелла. Но мы не можем этого делать, когда говорим о фотоэлектрическом эффекте, об интенсивности спектральных линий, радиоактивности, дифракции электронных волн и о многих других явлениях, в которых обнаруживается квантовый характер вещества и энергии. Тогда мы должны, так сказать, идти этажом выше. В то время как в классической физике мы говорили о координатах и скоростях одной частицы, теперь мы должны рассматривать волны вероятности в трёхмерном континууме, соответствующие этой задаче об одной частице.
Если мы раньше учились, как толковать задачу с точки зрения классической физики, то квантовая механика даёт свой собственный рецепт толкования аналогичной задачи.