Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Проявления кривизны пространства-времени на Земле минимальны и лишь недавно получили практическое применение (системы спутниковой навигации, к примеру, чтобы сохранялась синхронизация, требуют релятивистских поправок настройки) [245] . Эйнштейн на протяжении многих лет и не предполагал, что изгибание света под действием сил тяготения вообще можно как-то измерить. Но вот наконец решил взглянуть в небо. Эксперимент принципиально прост: дождитесь следующего солнечного затмения и в том месте и в то время, где и когда затмение наблюдается, измерьте положение какой-нибудь звезды, что проявится рядом с Солнцем в процессе затмения (из-за этого затмение и нужно: если Солнце ничто не загораживает, звезду никак не увидать); далее найдите данные о положении этой звезды, скажем, полугодичной давности, когда свет ее достигал ваших глаз, не касаясь нашей родной звезды. Во время затмения проверьте, возникает ли эта звезда там, где «должна», – или слегка «в стороне».

«Слегка» в данном случае – и впрямь слегка: всего 13/4 угловой секунды, или 0,00049°. Сам Ньютон мог бы открыть это явление, хотя его теория предсказывала иное отклонение. К 1915 году Эйнштейн уже сформулировал свои уравнения поля и сделал наилучшее свое предсказание. Первая подлинная проверка общей теории относительности заключалась, таким образом, не в удостоверении изгибания света, а в том, насколько именно он изгибается. Уверенности Эйнштейну хватало.

<p>Глава 28. Торжество синевласых</p>

Для наблюдения за солнечным затмением 29 мая 1919 года были отправлены две британские экспедиции. Артур Стэнли Эддингтон вел в бразильский Собраль ту, которая добилась успеха [246] . Эддингтон писал перед своим отъездом: «Нынешние экспедиции к месту затмения могут впервые выявить вес света [т. е. его притяжение полем тяготения – «ньютонов» анализ]; или же им удастся подтвердить странную теорию Эйнштейна о неевклидовом пространстве; или же они приведут к еще более далеко идущим последствиям – что нет никакого отклонения» [247] . На анализ полученных данных ушло много месяцев. Наконец, 6 ноября, результаты были объявлены на общем собрании Королевского научного и Королевского астрономического обществ. «Нью-Йорк Таймс», до сих пор ни разу не помянувшая Эйнштейна, учуяла, что этой-то новости найдется место на ее страницах [248] . Хотя, похоже, газета все равно неверно оценила важность этой новости: отправила обозревателем своего корреспондента по гольфу, Генри Крауча. Крауч даже на собрание не явился, однако с Эддингтоном все же поговорил.

На следующий день передовица лондонской «Таймс» гласила: «РЕВОЛЮЦИЯ В НАУКЕ», а ниже, помельче, «Новая теория Вселенной» и «Ньютоновским идеям конец». Отчет в «Нью-Йорк Таймс» вышел тремя днями позже, с заголовком «ТЕОРИЯ ЭЙНШТЕЙНА ТОРЖЕСТВУЕТ». Статья в «Нью-Йорк Таймс» воспевала Эйнштейна, одновременно выражая сомнение, не оптическая ли иллюзия этот эффект, и не спер ли Эйнштейн идею из романа Уэллса «Машина времени». Возраст Эйнштейна они переврали, сообщив, что ему «около пятидесяти», а ему было тогда сорок, зато фамилию напечатали правильно. Эйнштейн мгновенно стал мировой знаменитостью, а для многих – сверхъестественным гением. Одна восторженная школьница написала ему письмо с вопросом, существует ли он на самом деле. Всего за год о теории относительности было написано более сотни книг. Лекционные залы по всему миру ломились от желающих услышать популярное изложение теории. «Сайнтифик Америкэн» объявил награду в 5000 долларов за лучшее толкование длиной до 3000 слов. (Эйнштейн отмечал, что лишь он один среди всех его друзей не участвовал в этом конкурсе.)

Несмотря на преклонение широкой публики, некоторые коллеги взялись нападать на Эйнштейна. Майкельсон, глава физического факультета Университета Чикаго, принял наблюдения Эддингтона, но отказался соглашаться с теорией. Коллега Майкельсона с факультета астрономии говорил: «Теория Эйнштейна – заблуждение. Теорию, согласно которой “эфира” не существует и в которой гравитация – не сила, а свойство пространства, можно считать исключительно безумной выходкой, позором века» [249] . Никола Тесла также насмехался над Эйнштейном – но он, как выяснилось, и круглых предметов боялся.

Недавно за ужином Алексей высказал свое свежее художественное устремление: он желает покрасить волосы в синий. На дворе XXI век, дети уже красят волосы в синий никак не меньше пары десятилетий. Правда, девятилетних по-прежнему среди них немного. В следующий понедельник Алексей стал первым в своей школе, у кого волосы совпадали по цвету с чернилами. А Николай, четырехлетнее эхо старшего брата, устроил у себя на голове взрыв лаймово-зеленого.

Реакция школы оказалась довольно предсказуемой. Несколько детишек продемонстрировали интеллектуальные глубины и высоты сознания и объявили этот стиль крутым (в основном – друзья Алексея). Многие прочие дети не смогли смириться с таким отрывом от традиции и принялись обзывать Николая «черникой». Учитель потаращился, но от комментариев воздержался.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное