Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Еще одно революционное открытие Гаусса: кривизну заданного пространства можно изучить исключительно в его пределах, без оглядки на большее пространство, которое может содержать, а может и не содержать заданного. Технически говоря, геометрия искривленного пространства может быть изучена без учета евклидова пространства большей размерности. Мысль о том, что пространство может «искривляться» само по себе, а не во что-то еще, позднее оказалась необходимой для общей теории относительности Эйнштейна. В конечном счете, коль скоро мы не можем выбраться за пределы нашей Вселенной и взглянуть на ограниченное трехмерное пространство, в котором обитаем, со стороны, лишь такая теорема оставляет нам надежду на определение кривизны нашего мира.

Чтобы понять, как нам определить кривизну вне зависимости от пространства снаружи, представим Алексея и Николая двухмерными существами в цивилизации, жестко привязанной к поверхности Земли. Насколько их опыт отличается от нашего – за вычетом воздушных перелетов, покорений Эвереста и того факта, что рекорд по прыжкам в высоту у этой цивилизации – ноль?

Вот, к примеру, эти самые прыжки в высоту. Дело не в том, что Алексей никак не может оторваться от земли, – для него не существует самого понятия такого отрыва. И нам, «трехмерникам», нечего тут задаваться. В эту самую минуту на какой-нибудь гулянке у четырехмерных существ одна-другая умиленная душа, быть может, потягивает «маргариту» и постигает нашу с вами ограниченность. Раса ползучих букашек, мы и помыслить не можем о прыжках «в высоту» в их четырехмерном пространстве.

Также требует пояснений и неспособность Алек сея и Николая влезть на Эверест. Ясное дело, добраться до вершины они могут – это же все равно часть земной поверхности. Но у них не будет представления о перемене высоты. Алексей выходит из лагеря у подножия и движется к вершине, а то, что нам известно как земное тяготение, будет для него загадочной силой, которая тянет его назад к стоянке, словно горный пик наделен странным свойством отталкивания.

Помимо этой загадочной силы, Алексей и Николай переживают искривление геометрии пространства. К примеру, любой треугольник, в котором содержится гора, включает в себя до странности большое пространство. Оно и понятно: поверхности горы больше площади ее основания, но Алексей и Николай воспримут это как искажение пространства.

Алексею и Николаю невдомек, что существуют палочки, воткнутые в песок; они не могут наблюдать никакого Солнца, отбрасывающего тени от этих палочек. Лодка, исчезающая за горизонтом, для них – плоская, у нее ни корпуса, ни мачт. Все подсказки о том, что наша планета круглая, подмеченные древними, исчезнут, а Николаю и Алексею будет известны лишь расстояния и отношения между точками в их пространстве. Без намеков из третьего измерения Евклид и сам заключил бы, что это пространство – неевклидово.

Треугольники на глобусе

Представим древнего ученого по имени Неевклида. Сидит она себе в своем кабинете в академии и приходит к тем же выводам, что и наш старик Евклид. Но прежде чем обнародовать свои «Начала», она желает проверить, приложимы ли ее теории к пространству за пределами стен академии, т. е. к широкомасштабной геометрии пространства. Ее ученик Алексей приносит ей карту из библиотеки – см. рисунок на стр. 185. На карте видно, что габонский Либревиль располагается на нулевой широте, 9° ВД в вершине прямоугольного треугольника, две другие вершины которого приблизительно приходятся на нигерийский Кано (24°) и угандийскую Кампалу. Одна из основных теорем евклидовой геометрии – теорема Пифагора. Неевклида просит Алексея произвести расчеты и проверить ее. Алексей докладывает:

...

Сумма квадратов катетов: 3 444 500

Квадрат гипотенузы: 3 404 025

Неевклида, взглянув на результаты, выговаривает Алексею: нерадивый ты счетовод. Однако, проделав повторный расчет собственноручно, Неевклида обнаруживает, что Алексей прав. Тогда Неевклида применяет другой оборонительный прием теоретика: она списывает расхождения в расчетах на экспериментальную ошибку. Отправляет в библиотеку другого своего ученика, Николая, чтобы он собрал больше данных. Николай возвращается с координатами вершин треугольника пообширнее: Либервиль, итальянский Кальяри (39° СШ) и колумбийская Лерида (71° ЗД). Этот треугольник тоже отображен на карте. Николай вычисляет:

...

Сумма квадратов катетов: 38 264 845

Квадрат гипотенузы: 32 455 809

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное