Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

...

Треугольник с любыми длинами любых сторон можно увеличивать и уменьшать как угодно, изменяя длины сторон, но углы при этом останутся неизменны.

Допустим, у нас есть треугольник, у которого все углы равны 60°, а стороны – единичной длины; можно предположить, что существует другой треугольник, у которого углы тоже равны 60°, но стороны при этом какие угодно: 10, 10, 10 или 1/10, 1/10, 1/10 или 10 000, 10 000, 10 000. Такие треугольники – с пропорционально меньшими или большими сторонами, но с равными соответствующими углами – называются подобными. Если принять аксиому Валлиса, тогда, за вычетом пары преодолимых технических затруднений, постулат параллельности легко доказуем [139] с применением логики, похожей на Проклову. «Доказательство» Валлиса математиками так и не было принято, потому что оно есть, по сути, подмена одного постулата другим. Однако, если мы проследуем логике Валлиса в обратную сторону – придем к изумительному результату: если существует пространство, в котором постулат параллельности недействителен, то подобных треугольников не существует.

Ну и кому какое дело? А вот и нет: треугольники-то повсюду. Рассеките треугольник по диагонали – получите два треугольника. Уприте руку в бок – форма, образуемая при этом вашей рукой и боком, есть треугольник. В самом деле: хоть каждое тело и обладает уникальной формой, любое можно смоделировать при помощи сетки треугольников – с достаточной точностью; именно так устроена трехмерная компьютерная графика. А если подобных треугольников не существует, многие наши повседневные допущения не соответствуют действительности. Взгляните на симпатичный дамский костюм в каталоге одежды: вы ожидаете, что к вам прибудет экземпляр, подобный приведенному в каталоге, пусть даже и в десятки раз больше. Летите любимыми авиалиниями: вы предполагаете, что форма крыла, вполне пригодная для полета авиамоделей, имеет те же дивные свойства и у здоровенного самолета. Наймите архитектора, чтобы тот пристроил к вашему дому парочку дополнительных комнат: вы рассчитываете, что достраиваемые помещения соответствуют архитектурным чертежам. В неевклидовом пространстве этим ожиданиям никак не оправдаться. Ваши одежда, самолет и новая спальня претерпят искажения.

Быть может, такие странные пространства математически и существуют, но могут ли быть такие свойства у реального пространства? Мы бы ведь заметили, правда? Может, и нет. Отклонение в 10 % в форме вашей улыбки ваша мама, вероятно, заметит, а вот в 0,0000000001 % – скорее всего, нет. Неевклидовы пространства – почти евклидовы для маленьких фигур, а мы с вами живем в довольно маленьком углу Вселенной. Как и в квантовой теории, где законы физики принимают странные новые формы, лишь в мирах куда меньших, чем те, с которыми мы имеем дело ежедневно, может существовать искривленное пространство, но оно столь похоже на евклидово, что в масштабах обычной земной жизни мы не заметим разницу. И все-таки – как и в квантовой теории – последствия кривизны для физических теорий могут быть колоссальными.

К концу XVIII века, если бы математики взглянули на свои открытия по-другому, они бы заключили, что неевклидовы пространства существовать могут, а если так, у них могут быть кое-какие странные свойства. Однако вместо этого математики продолжили огорчаться из-за невозможности доказать, что эти странные свойства приводят к противоречиям, а значит, пространство – все-таки евклидово.

Следующие пятьдесят лет революция происходила тайно. Постепенно, за несколько столетий, были открыты новые виды пространств, но о них математическое сообщество либо умалчивало, либо их не замечало. До тех самых пор, пока ученые в середине XIX века не взялись разбираться с бумагами незадолго до этого почившего в бозе старика из немецкого Гёттингена, – тогда-то и открылись секреты неевклидова пространства. К тому времени большинство тех, кто открыл эти пространства, включая старика-немца, поумирало.

<p>Глава 15. Наполеоновский герой</p>

23 февраля 1855 года, Геттинген. Человек, возглавлявший атаку на Евклида, лежал в своей холодной постели, он был стар и каждый вздох давался ему с трудом. Его ослабевшее сердце едва толкало кровь по венам, а легкие переполнялись жидкостью. Карманные часы – тик-так, тик-так – отсчитывали время, что осталось ему на Земле. Но вот они остановились. Почти в тот же миг замерло и его сердце. Подобные символические детали обычно применяют лишь писатели [140] .

Несколько дней спустя старика похоронили рядом с безымянной могилой его матери. После его смерти по всему дому обнаружилось немалое состояние, запрятанное по углам – в ящиках комода, в шкафчиках, в столе. Дом его был скромен, крошечный кабинет меблирован лишь столом, бюро и диваном, с одной лампой. Маленькая спальня не отапливалась.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное