По оценкам недавних исторических исследований [76] , на одного знаменитого математика в истории человечества приходится три миллиона человек. Ныне исследовательские труды широко доступны по всему миру. В IV веке, когда свитки кропотливо копировали вручную примитивными орудиями письма, потеря такого произведения означала, что труд, в ней заключенный, попадал в Красную книгу. Мы не можем представить, какие великие сокровища вавилонской и греческой математики были утеряны навсегда в пожаре библиотеки, содержавшей более 200 000 свитков. Но мы точно знаем, что в библиотеке содержалось более сотни пьес Софокла, из которых до наших дней дотянуло лишь семь. Гипатия была воплощением греческой науки и рационализма. С ее смертью наступила гибель греческой культуры.
С падением Рима (около 476 года н. э.) Европе достались огромные каменные храмы, театры и особняки, современные городские удобства типа уличного освещения, проточной горячей воды и канализации, но очень мало чего из достижений ума. К 800 году [77] сохранились лишь фрагменты перевода Евклидовых «Начал» на латынь. Вписанные в подборку обзорных текстов, они содержали только формулы, как попало примененные округления и никаких попыток выводов. Греческая традиция абстрагирования и доказательства, казалось, утеряна навсегда. Блистательная исламская цивилизация процветала, а Европа скатывалась в глубокую интеллектуальную пропасть. Этот период европейской истории получил соответствующее название: Темные века.
Но все же греческую мысль воскресили. Интерес к книгам вроде «Топографии» увял, а работы Боэция были заменены переводами поточней. В период позднего Средневековья группа философов создала пространство мысли, в которой процветали великие математики XVI века – Ферма, Лейбниц, Ньютон. Один из таких мыслителей оказался в центре следующей революции геометрии и нашего понимания пространства. Имя ему Рене Декарт.
Часть II. История Декарта
Глава 7. Революция местоположения
Откуда вам известно, где вы находитесь? Поняв, что существует пространство как таковое, следом задать этот вопрос – естественнее всего. Может показать ся, что ответ – за картографией, наукой о картах. Но картография – лишь начало. Подлинная теория определения местоположения ведет к понятиям гораздо глубже простого утверждения «Калэмэзу [78] – в квадрате F3».
Определение местоположения не сводится к названию населенного пункта. Представьте, что эмиссар другой планеты приземляется у нас – эдакое тощее существо, голова пузырем, сам дышит кислородом, ну или косматый, похожий на обезьяну субъект, предпочитающий оксид азота. Пожелай мы общаться, нашему гостю не помешал бы словарь. Но хватит ли этого? Если ваше представление о качественном общении сводится к обмену репликами вроде «Я Тарзан, ты Джейн», словарем можно ограничиться, однако для обмена межгалактическими идеями пришлось бы выучить грамматику обоих языков. В математике тоже есть свой словарь – система наименований точек на плоскости, в пространстве или на шаре, но это лишь начало. Подлинная мощь теории местоположения – в способности соотносить разные местоположения, пути между ними и их формы, а также взаимодействовать с ними при помощи уравнений, т. е. в объединении геометрии и алгебры.
Ныне, как говорится в одном старом учебнике по этому предмету [79] , «учащемуся в наше время эти приемы даются практически без усилий». Трудно представить себе, до каких еще более грандиозных теорий додумались бы великие астрономы-физики Кеплер и Галилей, владей они приемами геометрии координат, но им пришлось обходиться без них. А вот уже располагая этим знанием, их последователи, Ньютон и Лейбниц, создали математический анализ и современную физику. Если бы геометрия и алгеб ра продолжили существовать порознь, мало какие достижения современной физики и инженерии стали бы возможны.
Подобно революции доказательства, первая веха на пути революции места – изобретение карт – возникла еще в догреческие времена. И хоть греческие гении вложились в этот предмет, конец цивилизации оставил его незавершенным, но сила этого знания уже оказалась на свободе. Следующим шагом в том же направлении стало изобретение графического представления функций, но оно случилось лишь с возрождением интеллектуальной традиции, после «темного» Средневековья. В итоге ушли последние великие греческие математики и картографы, и эта революция отстала на десяток веков.
Глава 8. Происхождение широты и долготы