Он прочел книгу Лагранжа не так быстро, как книгу Лежандра. Впечатления его были противоречивы. Как ни увлек его этот великий труд, он оставил у него и чувство неудовлетворенности, возраставшее с каждой прочитанной страницей. В геометрии он ясно видел общее построение, здесь — нет. И он знал, что не видит его, потому что его не существует. В здании геометрии видны были стиль, гармония, красота. Алгебра же была странным сочетанием построек различных стилей, большинство из которых было лишь заложено, и ни одно не завершено. За нагромождением построек не чувствовалось замысла великого зодчего.
Он старался определить причину своего недовольства. Думал об основной задаче алгебры — задаче решения алгебраических уравнений.
Алгебра, то есть элементарная алгебра, была порождена именно этой задачей. Истоки ее восходят к давним временам. Современная алгебра, с ее обширным полем исследований сегодняшнего дня, тоже зародилась из этой задачи, и истоки ее восходят к работе Галуа.
Итак, решение уравнения может быть либо легкой задачей, известной еще в античные времена; либо трудной задачей, с которой справились в период Возрождения, либо, в каком-то смысле, как это признавали Абель и Галуа, неразрешимой задачей.
Сказать, что если
Даже изучение этих сравнительно простых уравнений второй степени повело к далеко ведущему открытию мнимых и комплексных чисел.
Легко возразить: «Это тонкая паутина абстрактных понятий, умозрительных задач, весьма далеких от нашей обычной жизни». Однако уравнение второй степени приводит нас к комплексным числам — повседневному орудию инженеров и физиков. Из размышлений математика, из абстрактной нити его рассуждений возникли современная наука, современная техника.
В уравнении
Этими формулами можно воспользоваться, если знать коэффициенты, над которыми нужно совершать действия. В случае уравнения второй степени они еще достаточно просты, хотя значительно сложнее, чем для уравнений первой степени.
Некоторые алгебраические уравнения можно решить в радикалах. Это значит, что можно найти их решение конечным числом действий, совершаемых с коэффициентами алгебраических уравнений. Такими действиями являются рациональные действия (сложение, вычитание, умножение, деление) и извлечение корней. Если существует решение, которое можно достигнуть этими действиями, мы говорим, что уравнение можно решить в радикалах.
Уравнение первой степени — это пустяк. Уравнение второй степени несложно. При решении уравнений третьей степени возникают трудности, но это посильная задача, и она была разрешена почти за триста лет до того, как Галуа появился на свет. Корни, иными словами, решение уравнения третьей степени, можно найти путями, известными каждому математику: задача может быть сведена к уже известной — к решению уравнения второй степени. В математике этот прием используется постоянно: решение новой задачи сводится к уже известному решению старой. Подобным же образом алгебраическое уравнение четвертой степени может быть решено в радикалах, ибо задача его решения может быть сведена к задаче решения алгебраического уравнения третьей степени, а оно известно.
Но здесь метод, изложенный Лагранжем в его книге, неожиданно, резко и полностью обрывался. Верно, что если можно решить уравнение второй степени, значит можно решить и уравнение третьей. Если мы можем решить уравнение третьей, значит можно решить и уравнение четвертой. Казалось бы, эту цепочку можно продолжить: если можно решить уравнение четвертой, значит мы в состоянии решить уравнение пятой. Как по лестнице, мы сможем подниматься выше и выше, к решению уравнений все более высоких степеней.
Можно ли восходить от одного уравнения к другому, сводить решение уравнения высшей степени к решению ближайшего уравнения низшей? Можно ли решать все алгебраические уравнения рациональными действиями и с привлечением радикалов? Другими словами, можно ли продолжить лестницу бесконечно, или она обрывается?