Читаем Этот «цифровой» физический мир полностью

Анализ проводился в «широкой» полосе (600 Гц) и в «узкой» полосе (40 Гц). В полученных спектрах широкополосной составляющей (см. [К2]) не просматривается никакой систематики, похожей на продетектированный сигнал. Особенное же недоумение вызывает тот факт, что на всех спектрах широкополосной составляющей отсутствует узкополосная составляющая, которая, по традиционной логике, непременно должна была попасть в широкую полосу анализа. Поразительно: в той же статье приведены великолепные спектры узкополосной составляющей, положения энергетических максимумов которых позволили уточнить значение астрономической единицы, т.е. среднего радиуса орбиты Земли, на два порядка! Почему же спектры узкополосной составляющей, благодаря которым оказался возможен этот прорыв, не обнаруживались при анализе в широкой полосе?

Ответ на этот вопрос подсказывает статья [К3], где написано буквально следующее: «Под узкополосной составляющей понимается составляющая эхо-сигнала, соответствующая отражению от неподвижного точечного отражателя» (курсив наш). Надо полагать, что на этой фразе читатели спотыкались: какой, спрашивается, неподвижный отражатель может быть на удаляющейся вращающейся планете? И почему он точечный – какая, спрашивается, мощность может отразиться от точечного отражателя? Дело, по-видимому, в том, что термин «точечный» употреблён здесь не для описания размеров отражателя, а для того, чтобы исключить возможность понимания термина «неподвижный» в смысле «не вращающийся». Т.е., «неподвижный» - означает «не удаляющийся». Но каким образом можно было получить эхо-сигнал, «соответствующий» «не удаляющемуся» отражателю, если на самом деле он удалялся? Искушённые в тонкостях физической терминологии специалисты должны согласиться с тем, что подлинный смысл процитированной фразы таков: «Узкополосная составляющая – это эхо-сигнал, который наблюдался, когда компенсация эффекта Допплера, соответствующего удалению планеты, не проводилась». Но это означает, что когда в несущую излучаемого сигнала вносилась допплеровская поправка на удаление планеты, эхо-сигнал не обнаруживался, а когда эта поправка не вносилась – эхо-сигнал обнаруживался! Это с очевидностью свидетельствует о том, что эффект Допплера, который должен был вызываться удалением Венеры, в действительности отсутствовал. Согласно нашей модели, так и должно было быть; с официальной же теорией эти результаты несовместимы.

Добавим, что радиолокация Венеры узкополосным сигналом проводилась также зарубежными группами исследователей, и, по-видимому, всем им пришлось решать одну и ту же задачу: представить свои результаты так, чтобы прорыв не был омрачён скандалом. Впоследствии, впрочем, были обнаружены допплеровские сдвиги у эхо-сигналов, отражённых от западного и восточного краёв диска Венеры – из-за её медленного вращения вокруг своей оси. Но главная составляющая допплеровского сдвига, из-за приближения-удаления Венеры, упорно не обнаруживалась (см. также 2.13).

В дальнейшем, благодаря быстрому развитию экспериментальной техники, при радиолокации планет стало возможно обнаружение эхо-импульсов в реальном времени, что позволило измерять временные задержки на движение радиоимпульсов до планеты и обратно. Однако, при такой методике, экспериментаторы имеют дело с широкополосными сигналами, когда принципиально исключается нахождение допплеровских сдвигов – и проблема этих сдвигов перешла в разряд «неактуальных». Секрет успешной радиолокации Венеры в 1961 г. так и остался неизвестен для широкой научной общественности.

<p>1.10. Почему пропадала радиосвязь с АМС на первых подлётах к Венере и Марсу?</p>

Пока космические аппараты совершали полёты в пределах области земного тяготения, их траектории и манёвры рассчитывались, с приемлемой точностью, в геоцентрической системе отсчёта, а для допплеровских сдвигов несущей, при радиосвязи с ними, неплохо работала формула (1.8.1). Но это идиллическое согласие между традиционным теоретическим подходом и практикой рухнуло при первых же межпланетных полётах.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука