Читаем Этот «цифровой» физический мир полностью

Уточним некоторые свойства волны расчётных вероятностей – в первую очередь, вид её пространственного профиля. Как уже упоминалось выше, этот профиль имеет периодичность: соседние слои наибольших вероятностей отстоят друг от друга на расстояние, которое играет роль «длины волны». Откуда Навигатор «знает», какую длину волны создавать у волны расчётных вероятностей? Длина волны связана с величиной энергии возбуждения E через соотношение =hc/E, т.е. длина волны «известна» сразу же после возбуждения атома-отправителя. Что же касается формы профиля волны расчётных вероятностей, то, в духе «цифровых» первооснов физического мира, эта форма представляет собой не синусоиду, а, скорее, гребёнку из узких пиков ненулевой вероятности переброса, разделённых промежутками нулевой вероятности переброса. Иллюстрацией результирующей волны в целом может быть набор вложенных друг в друга расширяющихся мыльных пузырей, оболочки которых соответствуют слоям ненулевой вероятности переброса.

Из вышеизложенного следует, что, для каждого момента времени, квантовый переброс энергии возбуждения может быть выполнен лишь на дискретные расстояния – через промежутки, равные длине волны – и что начальное распределение вероятностей переброса имеет сферическую симметрию. Однако, эта сферическая симметрия нарушается сразу после того, как передний фронт волны расчётных вероятностей дойдёт до ближайшего атома. Если этот атом не выбирается в качестве адресата, и на него сразу же не производится квантовый переброс, то этот атом идентифицируется Навигатором как неоднородность, которая, по аналогии с принципом Гюйгенса-Френеля, становится «источником» вторичной сферической волны расчётных вероятностей. Эта вторичная волна имеет ту же длину волны, что и первичная волна, и синхронизирована с ней по фазе следующим образом: очередная сфера ненулевых вероятностей вторичной волны начинает своё расширение в момент прохождения очередной сферы ненулевых вероятностей первичной волны. Тогда, как можно видеть, эти сферы у вторичной и первичной волн расширяются, сохраняя касания друг друга в точках, которые движутся вдоль геометрического луча, проведённого от центра первичной волны через центр вторичной волны. Примем во внимание, что суммарная расчётная вероятность переброса в точки, которые «накрывают» пики ненулевых вероятностей сразу двух волн – и первичной, и вторичной – существенно возрастает (в относительном исчислении; полная расчётная вероятность переброса для всей области, которую успел просканировать Навигатор, очевидно, всегда равна единице). Значит, существенно возрастает вероятность переброса в выделенном направлении – по тому самому геометрическому лучу.

По этой логике работы Навигатора, выделенных направлений максимально вероятного переброса может образоваться несколько – по числу атомов из ближайшего окружения атома-отправителя. Это – примечательный вывод! Он позволяет сразу же объяснить, почему упорядоченные атомные структуры – например, монокристаллы – рассеивают попадающий в них свет не изотропно, а, преимущественно, в выделенных направлениях: вдоль лучей, на которые «нанизаны» их атомы.

Но вернёмся к нашему атому-отправителю. Вот, наконец, в одном из направлений максимально вероятного переброса, Навигатор делает выбор атома-получателя, и квантовый переброс энергии возбуждения происходит. На этом, вообще говоря, не завершается работа канала Навигатора, прокладывающего путь этой порции энергии. Работа завершится тогда, когда эта порция энергии уже не сможет быть передана дальше – например, после превращения её в иную форму энергии. А до тех пор, получивший порцию энергии атом сразу же становится «источником» новой волны расчётных вероятностей, которая «генерируется» по описанному выше алгоритму вторичной волны. Отсюда сразу же следует естественное объяснение феномена прямолинейного распространения света.

Впрочем, известен ряд факторов, которые приводят к тем или иным отклонениям от этой прямолинейности. Прежде всего, при совместном распространении первичной и вторичной волн расчётных вероятностей, максимальные вероятности переброса приходятся не просто на точки касания сфер этих волн, как это описано выше, а на несколько большие области касания, имеющие ненулевые размеры: толщины и поперечные радиусы. Эти поперечные радиусы областей касания увеличиваются по мере продвижения первичной и вторичной волн – из-за того, что увеличиваются радиусы сфер этих волн. Соответственно, увеличиваются поперечные радиусы областей максимальных вероятностей переброса, чем и объясняется – по крайней мере, качественно – дифракционная расходимость света.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука