Читаем Этот «цифровой» физический мир полностью

Здесь мы усматриваем: число минимумов, приходящихся на квадратуру – 3; число максимумов, приходящихся на сизигию – 6; а число максимумов, приходящихся на квадратуру – 17. Таким образом, даже поверхностный субъективный анализ показывает, что количество соответствий, подтверждающих увеличение числа землетрясений вблизи квадратур, почти вдвое превышает количество соответствий, не подтверждающих это. Т.е., приведённая статистика землетрясений свидетельствует в пользу одномерных синодических колебаний Земли вдоль текущего участка орбиты [Г11]!

<p>2.14. Ох, уж эти странности в движении Луны!</p>

Особенности движения Луны по небосводу издавна представляли большой практический интерес. Чем лучше знаешь движение Луны, тем точнее можешь решать навигационные задачи. Поэтому отклонения от равномерного движения Луны хорошо известны, они даже имеют специальное название: неравенства в движении Луны. Самое значительное из этих неравенств – т.н. большое эллиптическое. Оно отражает факт эллиптичности орбиты Луны, из-за чего апогейная скорость движения Луны меньше, чем перигейная.

Если, как обсуждалось выше (2.13), кинематика пары Земля-Луна такова, что Луна выписывает, около условного центра, двумерную кривую, а Земля совершает около этого центра одномерные колебания вдоль текущего участка своей орбиты, то это с полной очевидностью проявлялось бы через соответствующее неравенство в движении Луны. Вот вы, дорогой читатель, как полагаете – проявляется оно или нет? Конечно, проявляется – да притом с полной очевидностью. Это неравенство – т.н. вариация. Именно вариация и соответствующие ей периодические изменения геоцентрического расстояния до Луны отражают – практически, в чистом виде – факт двумерного полёта Луны и одномерных колебаний Земли [Г12]. Именно такие, как у вариации, положения нулей и максимумов, для поправки в видимую долготу Луны, должны иметь место, если двумерное движение Луны и одномерные колебания Земли сфазированы следующим образом: в моменты квадратур Земля находится на максимальном удалении от центра колебаний, причём в сторону, противоположную Луне, а в моменты сизигий (новолуний и полнолуний) Земля проходит через центр колебаний. Таким образом, одномерность колебаний Земли в кинематике пары Земля-Луна имеет самое прямое подтверждение – астрооптическое. По-простому, это называется «подтверждение методом пристального вглядывания».

Но это ещё не всё. В отличие от вариации, положения нулей и максимумов которой фиксированы по отношению к линии Земля-Солнце, у ещё одного главного неравенства в движении Луны, т.н. эвекции, положения нулей и максимумов являются плавающими. Это неравенство также находит простое объяснение на основе наших исходных допущений о том, что солнечное тяготение, будучи «отключено» в области земного тяготения, на Луну не действует, а Луна летает в области земного тяготения как болванка, которая не действует на Землю.

Ясно, что синодические колебания Земли и её частотной воронки, вперёд-назад вдоль текущего участка околосолнечной орбиты, порождаются не воздействиями Луны и не воздействиями Солнца. Нам придётся допустить, что эти колебания были специально организованы – чисто программными манипуляциями. Для этого в алгоритм, управляющий орбитальным движением земной частотной воронки (2.8), внесли соответствующую модификацию. Зачем это понадобилось? В результате этой процедуры земная частотная воронка не находится в чистом орбитальном «свободном падении», а испытывает периодические ускорения-замедления своего орбитального полёта, так что Луна-болванка движется по склонам этой «болтающейся» частотной воронки. Из равенства синодическому месяцу периода этой «болтанки» напрашивается вывод: принудительные колебания земной частотной воронки понадобились для того, чтобы быть синхронизатором орбитального движения Луны, играя роль параметрического задатчика периода её обращения [Г12].

Что это означает? Ускорения земной частотной воронки вперёд-назад, обусловленные её одномерными колебаниями, должны порождать противоположные «ускорения сноса» Луны-болванки. Физический смысл здесь прост и нагляден: если тело свободно движется в «инерциальном пространстве», которое само имеет ускорение, то это тело движется по отношению к «инерциальному пространству» так, как будто это тело имеет противоположное ускорение. И вот эти «ускорения сноса» являются слабыми воздействиями, возмущающими движение Луны. Из-за строгой периодичности этих возмущающих воздействий происходит синхронизация орбитального движения Луны: её движение подстраивается так, чтобы период обращения – между двумя новолуниями – был равен периоду синхронизирующих воздействий.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука