Кстати, вывод о лжи ESA можно было сделать сразу после того, как были опубликованы данные [ВЕБ24], описывающие «захват» зонда тяготением Луны. Этих данных достаточно для реконструкции, во-первых, полуэллипса подлёта, по которому зонд двигался в поле тяготения Земли перед тем как, вблизи апогея, войти в сферу действия Луны, и, во-вторых, первого полуэллипса снижения в сфере действия Луны. Даже старшеклассник мог бы убедиться в том, что эти два полуэллипса не «сшиваются» друг с другом [Г10] – а, значит, официальная информация о захвате зонда тяготением Луны и о его дальнейшей судьбе является фальсификацией.
Что же в действительности произошло с зондом SMART-1? По-видимому, при малости области тяготения Луны, зонд просто не вошёл в эту область – и, как ни в чём не бывало, продолжил свой полёт по эллиптической орбите вокруг Земли. Самое разумное, что могли сделать руководители полёта в такой ситуации – это проверить, не «захватится» ли зонд на следующем пролёте через сферу действия Луны. До срока завершения миссии можно было сделать ещё несколько попыток такой проверки [Г10]. Но чуда не произошло. Чтобы зонд добрался до области лунного тяготения и в самом деле захватился, требовалось ещё поднять апогей и значительно увеличить апогейную скорость. Увы – на малой тяге и с почти израсходованными запасами рабочего вещества – выполнение этой задачи было совершенно нереально. По всей вероятности, зонд до сих пор летает по эллиптической орбите, которая почти дотягивается до орбиты Луны.
А всё потому, что, на расстоянии уже в несколько десятков тысяч километров от Луны, её тяготение, вопреки официальным воззрениям, не действует.
2.13. Луна не притягивает Землю!
Если область тяготения Луны далеко не достаёт до Земли, то кинематика пары Земля-Луна должна отличаться от той, что предсказывает закон всемирного тяготения. Так ли это?
Рассмотрение обращения Луны вокруг Земли, наряду с орбитальными движениями планет, сыграло важную роль в работе Ньютона над законом всемирного тяготения. Среднее удаление Луны от Земли соответствует среднему периоду обращения Луны как раз в согласии с этим законом. И Лаплас в своей «Системе мира» [Л2] заявил, что полное согласие движения Луны с законом всемирного тяготения является неоспоримой научной истиной.
Но! Неспроста же говорят, что достаточно иметь отрывной календарь, чтобы убедиться в том, что Луна летает «неправильно». Согласно закону всемирного тяготения, орбита невозмущённого движения спутника планеты является кеплеровой – эллиптической. Возмущения же, например, из-за действия третьего тела, должны приводить к эволюциям параметров орбиты. Причём, эти параметры должны эволюционировать согласованно: так, приращению большой полуоси должно соответствовать приращение периода обращения в согласии с третьим законом Кеплера. Однако, движение Луны вокруг Земли является вопиющим исключением из этого правила. Достоверно известно – и отражается в Астрономических ежегодниках, см., например, [Г12] – что большая полуось орбиты Луны изменяется, с периодом 7 синодических месяцев, на ~5500 км. Размах соответствующего изменения периода обращения, согласно третьему закону Кеплера, должен составлять ~14 часов. В действительности же, вариация длительности синодического месяца составляет около 5 часов, причём период этой вариации равен не 7 синодическим месяцам, а 14. Таким образом, в случае Луны большая полуось и период обращения эволюционируют несогласованно – как по амплитуде, так и по периодичности.
Несомненно, об этой проблеме знали уже первые теоретики движения Луны – в частности, тот же Лаплас. Несомненно, они понимали: никакие «возмущения орбиты» не помогут решить эту проблему, ибо, согласно закону всемирного тяготения, не бывает возмущений, которые приводили бы к тому, что линейные размеры орбиты и период обращения по ней изменяются так несогласованно. Выяснить, почему Луна движется таким странным, с точки зрения закона всемирного тяготения, образом – означало бы вынести приговор этому закону. Поэтому теорию движения Луны строили весьма своеобразно: «