Читаем Этот «цифровой» физический мир полностью

Как отмечалось в (1.4), частота квантового пульсатора и его собственная энергия прямо пропорциональны друг другу. Следовательно, градиент этих частот означает градиент энергий. А градиент энергий означает силовое воздействие. Действительно, теоретическая механика учит, что вектор силы, действующей на тело, пропорционален и противоположно направлен градиенту потенциальной энергии – отчего тело, находящееся на склоне потенциальной ямы, «скатывается вниз». Но потенциальная энергия тела не вписывается в реалии «цифрового» мира. Эта энергия зависит только от местоположения тела и не соответствует никакой форме движения – тогда как такое соответствие является непременным атрибутом реальной физической энергии (1.3). Такой реальной энергией является энергия квантовых пульсаций, и тяготение организовано через градиенты именно этой энергии – через частотные склоны. Находясь на частотном склоне, пробное тело испытывает силовое воздействие, направленное «вниз», т.е. туда, где частоты квантовых пульсаций меньше. При этом ускорение свободного падения, сообщаемое пробному телу локальным участком частотного склона, есть [Г5]

, (2.7.1)

где df/dr – локальный градиент частот, c – скорость света.

О чём говорит это выражение? Прежде всего, оно подчёркивает непричастность масс к порождению тяготения, поскольку, как можно видеть, ускорение свободного падения не зависит от массы «силового притягивающего центра»: оно определяется лишь геометрией локального участка частотного склона.

Далее, из выражения (2.7.1) тривиально следует объяснение того факта, что, скажем, в одном и том же месте области действия тяготения Земли, различные тела имеют одно и то же ускорение свободного падения – независимо от их массы, формы, химического состава и агрегатного состояния. Эйнштейн придавал этому факту фундаментальное значение. Он полагал, что его теория объяснила этот фундаментальный факт. Там вышло вот что: в ньютоновском законе всемирного тяготения фигурирует т.н. гравитационная масса тела, а в выражении второго закона Ньютона – его инертная масса. Комбинация этих выражений даёт, что ускорение свободного падения тела прямо пропорционально отношению его гравитационной массы к инертной. А это отношение в каждом месте одинаково для различных малых тел – и пусть оно, мол, равно единице! Тогда, мол, всё сходится! Но у этого «объяснения» есть всего один недостаточек. Оно, может, и работало бы, если понятие «гравитационная масса» имело бы физический смысл – если массы обладали бы притягивающим действием. Но, как проиллюстрировано выше, это не так. А одинаковость ускорения свободного падения у разных тел обусловлена тем, что в любом месте крутизна частотного склона, порождающего тяготение, одинакова для всех. Поэтому, когда говорят, что эксперименты Этвёша, Дикке и Брагинского установили равенство инертной и гравитационной масс с точностью аж до двенадцатого знака, то надо понимать, что установили-то, с этой точностью, одинаковость ускорений свободного падения для различных тел, и ничего сверх этого. Согласно (2.7.1), идентичность этих ускорений, сообщаемых разным малым телам одним и тем же участком частотного склона – это по определению так. Не нужно здесь изображать заумную «фундаментальность»!

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука