Читаем Этот «цифровой» физический мир полностью

Годичная аберрация легко объяснялась на основе ньютоновых представлений о световых корпускулах. Объяснение же её с позиций представлений о свете, как о волнах в эфире, было довольно-таки проблематичным. В самом деле, наземные оптические опыты, например, опыт Майкельсона-Морли, показывали, что околоземный эфир вместе с Землёй участвует в её орбитальном движении. Как же тогда околоземный эфир без всяких турбулентностей продирается сквозь межпланетный эфир? Стокс показал, что эта проблема, по линии гидродинамики, устранялась бы, если плотность эфира у поверхности Земли была бы на несколько порядков больше, чем в межпланетном пространстве. Но известно, что скорость света у поверхности Земли и в межпланетном пространстве – практически одинакова, а ведь свет считался волнами упругих деформаций в эфире! Немыслимо, чтобы, при изменении плотности среды на несколько порядков, не изменялась бы скорость упругих волн в этой среде! Наконец, Эйнштейн упразднил эфир и, следуя логике относительных скоростей, заявил, что угол аберрации зависит от относительной тангенциальной скорости излучателя и наблюдателя [Э2].

Это заявление, как оказалось, отнюдь не согласуется с экспериментальными фактами. Так, визуально-двойные звёзды имеют заведомо различные тангенциальные скорости относительно земного наблюдателя – но они испытывают такие же аберрационные сдвиги, как и одинарные звёзды, причём эти сдвиги у двойных звёзд одинаковы не только по величине, но и по направлению. Концепция относительных скоростей, с очевидностью, не работает: годичная аберрация звезд зависит лишь от годичного движения наблюдателя! До сих пор релятивисты делают вид, что проблемы не существует – хотя, фактически, у них отсутствует понимание одного из ключевых явлений в оптике движущихся тел.

Между тем, это явление находит естественное объяснение на основе нашей модели, согласно которой частотные склоны играют роль той самой «небесной тверди», относительно которой локально фиксирована фазовая скорость света в вакууме. Т.е., эта скорость является фундаментальной константой лишь в локально-абсолютном смысле. Например, пока свет движется в пределах области планетарного тяготения, его скорость равна c только в планетоцентрической системе отсчёта. А в гелиоцентрической системе отсчёта она векторно складывается с гелиоцентрической скоростью планеты. Наоборот, по межпланетному простору свет движется со скоростью c только в гелиоцентрической системе отсчёта – для скорости же его относительно какой-либо планеты, следует, опять же, делать соответствующий векторный пересчёт. Заметим, что эти пересчёты следует делать не по релятивистскому закону сложения скоростей, а по классическому!

Согласно этой логике, свет от далёкой звезды, прошедший сквозь границу области земного тяготения, «игнорирует» тот факт, что эта область движется по межпланетному пространству. Свет движется по этой области со скоростью c – причём, направление движения определяется простым правилом: свет продолжает двигаться в том направлении, в котором он пересёк границу. А это направление, т.е. угол влёта, определяется классической комбинацией вектора орбитальной скорости области земного тяготения и вектора скорости света на подлёте к границе. В частном случае, когда эти векторы ортогональны, отношение их модулей даёт тангенс угла годичной аберрации – одной из фундаментальных констант в астрономии.

Таким образом, феномен годичной аберрации находит элементарное объяснение как пограничный эффект, происходящий при переходе светом от звёзд границы области земного тяготения – с переключением вектора скорости света на новую локально-абсолютную привязку. Единым махом объясняются особенности годичной аберрации, которые до сих пор не удалось объяснить на основе концепции относительных скоростей. Во-первых, это одинаковость больших полуосей эллипсов годичной аберрации для всех звёзд, независимо от их других собственных движений по небесной сфере. Во-вторых, это результат проверки того, не происходит ли аберрационный «излом» движения света на телескопе, с помощью которого ведутся наблюдения. Для этой проверки Эйри заполнил телескоп водой. Скорость света в воде примерно в полтора раза меньше, чем в воздухе. Если бы «излом» происходил на телескопе, то отношение скорости движения телескопа к скорости света в нём дало бы в полтора раза больший аберрационный эффект. Однако, эффект остался прежним – значит, в телескоп попадает свет, уже испытавший аберрационное отклонение где-то выше. Наконец, в-третьих, это своеобразная селективность действия феномена: годичная аберрация наблюдается для объектов, находящихся за пределами области земного тяготения – но не наблюдается для объектов, находящихся внутри этой области, например, для Луны и искусственных спутников Земли.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука