Читаем Этот «цифровой» физический мир полностью

Едва ли можно сомневаться в том, что движущаяся заряженная частица, индуцируя статические зарядовые разбалансы в молекулярной среде и ионизируя её, повышает её температуру. Этот вывод сыграет ключевую роль в вопросе об источнике тепла реакций горения (5.11).

<p>5.11. О тепловых эффектах химических реакций.</p>

Ортодоксы считают установленным, что, при экзотермических химических реакциях, тепло выделяется за счёт увеличения энергии химических связей у продуктов по сравнению с реагентами. Этот догмат положен в основу термохимии, и немалая часть справочных величин – теплоёмкостей, теплот образования, энергий диссоциации – получена не эмпирическим путём, а через термодинамические расчёты [В1,Ф3,Б1]. Энергии химических связей считаются характеристическими – в частности, не зависящими от температуры среды. Но температурная зависимость тепловых эффектов – для различных химических реакций – является, скорее, правилом, чем исключением [Ф3,Б1].

Чтобы не делать сокрушительный для термохимии вывод о непостоянстве энергий химических связей, теоретики ухватились за тезис о том, что единственной причиной температурных зависимостей тепловых эффектов являются температурные зависимости теплоёмкостей у реагентов и продуктов реакции. Закон Кирхгофа [Ф3] гласит: «температурный коэффициент теплового эффекта равен разности теплоёмкостей начальных и конечных веществ», т.е.

(dQ/dT)=C1-C2, (5.11.1)

где Q – тепловой эффект, T – абсолютная температура, C1 и C2 – соответствующие теплоёмкости. Интегрируя выражение (5.11.1) по температуре с учётом температурных зависимостей C1 и C2, и находя константу интегрирования с помощью известного значения Q для некоторой температуры, находят искомую зависимость Q(T) [Ф3,Б1]. Можно убедиться в неплохом совпадении справочных зависимостей Q(T), полученных с помощью калориметрических измерений, и расчётных зависимостей Q(T), найденных на основе справочных температурных зависимостей теплоёмкостей для реагентов и продуктов. Подобные совпадения и вправду свидетельствовали бы о корректности основных положений термохимии – если бы не то обстоятельство, что сопоставляемые здесь величины не являются независимыми.

Ну, действительно: как измеряют количество теплоты? Его измеряют калориметрическим методом – через приращение температуры балластного вещества, когда считаются известными его масса и теплоёмкость. А как измеряют теплоёмкости? Их измеряют тоже калориметрическим методом – через приращение температуры балластного вещества, когда считаются известными его масса и сообщённое ему количество теплоты. Выходит, что тепловые эффекты и теплоёмкости, связанные законом Кирхгофа (5.11.1), образуют, с эмпирической точки зрения, тривиальный замкнутый круг. Хуже того: соответствия между справочными температурными зависимостями теплоёмкостей и тепловых эффектов зачастую обеспечивались прямыми пересчётами, при множественных согласованиях экспериментальных результатов для одних и тех же веществ, участвующих в различных реакциях. По результатам этой титанической работы, в которой задействованы целые институты, закон Кирхгофа подтверждается, в основном, благодаря калькуляциям – выполненным именно так, как требует этот самый закон!

Такое положение дел неудивительно. Выше мы уже приводили свидетельства о том, что энергии химических связей являются иллюзиями (5.7,5.8). Теперь мы изложим наши представления о источниках тепла химических реакций. Мы говорим «о источниках», а не «о источнике» - вот почему. Известно, во-первых, множество реакций со слабыми тепловыми эффектами. Такие реакции, как правило, термодинамически обратимы – в условиях химического равновесия, количества элементарных актов прямой и обратной реакций, экзотермической и эндотермической, в среднем, одинаковы, и температура среды остаётся постоянной. Но известно, во-вторых, множество реакций с большим тепловым выходом – в частности, реакций горения. Они термодинамически необратимы: здесь, насколько нам известно, не бывает равновесий между прямой и обратной реакциями, причём, в обратной реакции не происходит эквивалентного «поглощения тепла». С позиций термодинамики, совершенно необъяснимо, почему при слабых тепловых эффектах названная обратимость имеет место, а при сильных – нет. Между тем, этот парадокс легко разрешается: ниже мы постараемся показать, что главный источник тепла при реакциях горения – совсем не тот, что при обратимых реакциях со слабым тепловым выходом.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука