притяжению положительного иона щелочного металла и отрицательного иона галоида. Согласно этой теории, нейтральные атомы Na и Cl, имеющие по одному валентному электрону, не могут образовать молекулу NaCl: тут требуются ионы Na+ и Cl-. Из учебника в учебник пересказывают, как атом Na, якобы, «легко отдаёт» свой внешний электрон, а атом Cl «охотно включает» этот лишний электрон в свой состав – хотя энергия сродства к электрону у атома Cl, 3.82 эВ [В1,Р1], меньше, чем энергия ионизации атома Na, 5.1 эВ [В1,Р1] – после чего ионы, якобы, соединяются в молекулу. Проблема здесь не только в том, что для образования ионных молекул требовался бы мощный механизм предварительного приготовления ионов. Покажем, к чему приводит сама идея о том, что молекула может держаться на электростатическом взаимодействии. Ионный радиус у Na+ есть
Укажем на ещё один важный вопрос по поводу этой модели. Какие силы препятствуют взаимопроникновению притягивающихся ионов и останавливают их на расстоянии, равном сумме ионных радиусов? Математически, за эти силы отвечает второй член потенциала [К2]
(
А теперь вспомним, что, как известно, модель ионной связи принципиально не годится для объяснения соединений однотипных атомов – например, H2, Na2, Cl2 – ведь в таких случаях с очевидностью отсутствует асимметрия, требуемая для разрешения вопроса о том, кто кому будет отдавать электрон. Считается, что проблему связей однотипных атомов разрешила теория ковалентной связи [П5,К2,К3,Ф2,Л1,П2]. Поскольку физических причин для таких связей не усмотрели, то ухватились за чисто математический фокус: квантово-механическое описание перекрытия электронных облаков двух атомов даёт член, описывающий т.н. обменную энергию – выражающую идею о том, что электрон, размазанный по объёму того самого перекрытия, находится в смешанном состоянии, входя в состав обоих атомов одновременно. Нелепость этой концепции иллюстрируется, во-первых, тем, что происхождение обменной энергии не оговаривается, так что ковалентная связь, самим фактом своего существования, нарушала бы закон сохранения энергии. Во-вторых, если перекрытие электронных облаков действительно приводило бы к сцепке атомов, то, например, к молекуле водорода мог бы присоединиться ещё один атом водорода, а к нему – ещё один, и т.д. Существовали бы гипер-молекулы из однотипных атомов – но их, опять же, не бывает, в подтверждение «золотого правила»: один валентный электрон может участвовать в создании только одной текущей химической связи.