Вернёмся к случаю с диэлектрической прокладкой, внесённой в заряженный плоский конденсатор. Чтобы поле конденсатора ослаблялось в объёме прокладки, на ней должны быть индуцированы поверхностные заряды – и не зря спонтанную поляризацию сегнетоэлектриков измеряют в кулонах на квадратный сантиметр [И1], т.е. в единицах поверхностной плотности заряда. При том, что в диэлектриках свободные заряды практически отсутствуют, поверхностные заряды вполне могут быть индуцированы через зарядовые разбалансы.
Действительно, логично допустить, что зарядовые разбалансы индуцируются в диэлектрике таким образом, чтобы имитированные при этом электрические заряды нейтрализовывали, в некоторой степени, неоднородности внешнего распределения зарядов. Тогда, действительно, со стороны отрицательной пластины конденсатора, в диэлектрике должен индуцироваться положительный зарядовый разбаланс, и наоборот. Оценим отклонения, от среднего 50-процентного значения, скважности прерываний квантовых пульсаций в атомных связках «протон-электрон», при которых индуцированные поверхностные заряды в диэлектрике обеспечивали бы типичные значения диэлектрической проницаемости. Будем считать, что это отклонение скважности (в %) линейно по внешнему полю, тогда для индуцированного разбалансного заряда одной связки «протон-электрон» можно записать
где - искомый коэффициент отклика скважности прерываний на внешнее поле, с размерностью %/(В/м). Полный индуцированный поверхностный заряд составит
где
=
Комбинируя выражения (5.2.2-5.2.4) и справедливое для плоского конденсатора выражение
= 1+(
Из этого выражения следует, что для типичных твёрдых диэлектриков, имеющих значения =5 и
Следует добавить, что зарядовые разбалансы не являются механическими подвижками связанных заряженных частиц. Поэтому зарядовые разбалансы не подвержены влиянию тепловых шумов – эта особенность усиливает правдоподобность нашей модели.
5.3. Радиоволны в диэлектрической среде, как волны зарядовых разбалансов.
В ортодоксальной физике считается, что радиоволны – это электромагнитные колебания, которые распространяются «в пустоте» со скоростью света, и которым вещество, попадающееся им на пути, лишь мешает свободно двигаться.
Критику концепции электромагнитного поля мы уже излагали выше (3.1) – по мере развития теории этого поля, в ней лишь разрастался клубок вопиющих противоречий, которые по многочисленности и остроте далеко превзошли тех, которых хватило, чтобы отказаться от концепции эфира. Отправным же пунктом наших представлений является то, что физической реальностью является только вещество (1.1) – обладающее разнообразными формами энергии.
Поэтому и при распространении радиоволн в диэлектрической среде, например, в газовой, вся физика процесса, как мы полагаем, происходит исключительно на веществе. Об этом свидетельствует определяющая роль вещества диэлектрической среды при распространении в ней радиоволн – например, такие явления как дисперсия, а также различные нелинейные эффекты. Эту определяющую роль диэлектрической среды пытаются объяснить в рамках традиционного подхода (см., например, [Х1]), переходя от случая статического поля, индуцирующего дипольные моменты молекул, к случаю переменного поля – и делают вывод о том, что, при распространении радиоволны, в диэлектрической среде распространяется соответствующая волна электрической поляризации.