Обращает на себя внимание сходство формул (4.4.2) и (4.4.3), в которых привычные выражения помножены на один и тот же множитель, зависящий от локально-абсолютной скорости. Эти формулы наглядно показывают, что по мере увеличения локально-абсолютной скорости, собственная энергия квантового пульсатора даже не остаётся постоянной – она, частично превращаясь в кинетическую энергию, уменьшается. Причём, в случае
А правда в том, что в кинетическую энергию свободного электрона превращается его собственная энергия, и никакая другая. Ортодоксам трудно в это поверить. Они полагают, что в кинетическую энергию электрона превращается энергия ускоряющих его электромагнитных полей. Именно это, якобы, проделывается на ускорителях заряженных частиц. Логика убийственная: электроны ускоряются лишь тогда, когда электромагниты включены – значит, ускоряются-то они на энергиях полей! И, чтобы стать ультрарелятивистскими, ускоряемые электроны должны накрутить многие километры!.. Да мы не оспариваем то, что на ускорителях электроны накручивают километры. Мы лишь напомним, что в природе есть способ гораздо белее эффективного разгона электрона. Вот он: при бета-распаде [Д2] из ядра выстреливается готовый релятивистский электрон. Спрашивается: что это за чудовищные поля генерируются в ядре – которые, к тому же, избирательно действуют лишь на выстреливаемый электрон? А если не поля – то что? Не маленькие же зелёные человечки с кувалдами! «Моментальный» разгон электрона при бета-распаде остаётся тайной для науки. По традиционной логике, здесь кинетическая энергия должна быть откуда-то
Принцип автономных превращений энергии позволяет по-новому взглянуть на эту проблему. Но прежде скажем о том, как мы представляем алгоритм пространственного перемещения свободного квантового пульсатора. Если сущностью квантового пульсатора является циклический скачкообразный процесс, то логично предположить, что и перемещаться в пространстве он может лишь скачкообразно. Движение квантового пульсатора с постоянной скоростью означает, что, через некоторое постоянное число собственных циклов, он совершает элементарное скачкообразное перемещение – длина которого, как мы полагаем, равна характерному размеру квантового пульсатора, т.е. его комптоновской длине. Такое элементарное перемещение мы называем квантовым шагом. Частота квантовых шагов равна, как можно видеть, отношению скорости движения к длине квантового шага, т.е. к комптоновской длине С, которая, с учётом (4.4.3), также зависит от скорости:
Как можно видеть из (4.4.4), по мере роста скорости частота квантовых шагов растёт, и при
Теперь вернёмся к «моментальному» разгону электрона при бета-распаде. Алгоритм, который осуществляет превращение собственной энергии электрона в кинетическую, работает, по логике вышеизложенного, с дискретом во времени, соответствующим периоду пульсаций электрона. И такое превращение – хоть даже на максимально допустимую величину – может произойти, в принципе, за один цикл работы этого алгоритма. И – полетел он, релятивистский электрон!
Уточним, что, согласно принципу автономных превращений энергии, частица вещества не может ни отдать часть своей энергии вовне, ни получить добавочную энергию извне. Казалось бы, этот подход противоречит опыту – ведь при многих взаимодействиях, как полагают, происходит передача энергии от одного микрообъекта другому. Но при ближайшем рассмотрении оказывается, что во всех этих случаях вполне может происходить не передача энергии, а её согласованные автономные превращения, порождающие иллюзию передачи.