Читаем Это база: Зачем нужна математика в повседневной жизни полностью

Однако стоит копнуть поглубже, и значимость математики быстро становится очевидной. Без уравнений аэродинамики невозможно конструировать самолеты. Навигация опирается на тригонометрию. Сегодня мы пользуемся навигацией совсем не так, как делал это Христофор Колумб, поскольку математика у нас встроена в электронные устройства и нам не приходится пользоваться пером, чернилами и навигационными таблицами, но базовые принципы остаются примерно теми же. Для разработки новых лекарств необходима статистика, без которой невозможно обеспечить их безопасность и эффективность. Спутниковая связь невозможна без глубокого понимания небесной механики. Прогнозирование погоды требует решения уравнений, описывающих движение атмосферных масс, количество содержащейся в них влаги, температуру и взаимодействие всех этих факторов. Можно привести тысячи разных примеров. Мы не замечаем, что в них задействована математика, ведь для использования результатов это знать необязательно.

Что же делает математику столь полезной для такого широкого набора видов человеческой деятельности?

Этот вопрос не нов. Еще в 1959 году физик Юджин Вигнер прочел в Нью-Йоркском университете лекцию{2} под названием «Непостижимая эффективность математики в естественных науках». В ней он сосредоточился на науке, но то же самое можно было бы сказать и о непостижимой эффективности математики в сельском хозяйстве, медицине, политике, спорте… в общем, всюду, куда ни глянь. Сам Вигнер надеялся, что сфера применения математики будет расширяться. И она, безусловно, расширяется.

Ключевое слово непостижимая в названии лекции Вигнера вызывает удивление. Использование математики по большей части вполне постижимо, если, конечно, разобраться в том, какие методы задействованы в решении задачи или при создании гаджета. Например, совершенно логично, что инженеры применяют уравнения аэродинамики при конструировании самолетов. Для этого аэродинамика в свое время и создавалась. Математический аппарат, используемый в прогнозировании погоды, в значительной мере создавался именно с этой целью. Статистика уходит корнями в открытие глобальных закономерностей в данных о поведении людей. Математика, необходимая для конструирования вариофокальных объективов, необъятна, но по большей части она разрабатывалась как раз для оптики.

С точки зрения Вигнера, возможности математики в решении важных задач становятся непостижимыми при отсутствии связи между первоначальной целью разработки математического аппарата и его последующим использованием. Вигнер начал свою лекцию с истории, которую я перескажу своими словами.

Встретились два бывших одноклассника. Один из них, статистик, исследующий демографические тенденции, показал другому свою статью, которая начиналась со стандартной в статистике формулы нормального распределения, или колоколообразной кривой{3}. Он объяснил, что означают в ней различные символы – вот численность населения, вот среднее значение по выборке – и как при помощи этой формулы можно узнать численность населения, не пересчитывая всех поголовно. Его одноклассник заподозрил, что приятель шутит, но не был в этом уверен и начал расспрашивать об остальных обозначениях и в конечном итоге добрался до символа, который выглядел так: ?.

– Что это за значок? Выглядит знакомо.

– Да, это число пи – отношение длины окружности к ее диаметру.

– Теперь я точно знаю, что ты меня разыгрываешь, – сказал приятель. – Разве окружность имеет какое-то отношение к численности населения?

Прежде всего надо отметить, что скептицизм приятеля совершенно понятен. Здравый смысл подсказывает, что две такие несопоставимые концепции просто не могут быть связаны. В конце концов, одна имеет отношение к геометрии, другая – к людям. Однако, несмотря на здравый смысл, такая связь существует. Колоколообразная кривая описывается формулой, в которой, как ни странно, фигурирует число ?. И это не просто удобная аппроксимация, в ней действительно стоит число, в точности равное нашему старому знакомому ?. Но причина, по которой это число фигурирует в формуле колоколообразной кривой, неочевидна даже для математиков, и вам потребуется углубленное знание дифференциального исчисления, чтобы понять, откуда оно берется, не говоря уже о том почему.

Позволю себе рассказать еще одну историю о числе ?. Несколько лет назад мы делали ремонт в ванной на первом этаже. Спенсер, поразительно разносторонний мастер, который пришел укладывать плитку, узнал, что я пишу популярные книги по математике.

– У меня есть математическая задачка для вас, – сказал он. – Мне поручили уложить плитку на пол в круглой комнате, и теперь нужно узнать ее площадь, чтобы выяснить, сколько потребуется плитки. Была ведь какая-то формула, которую мы учили…

– Пи эр квадрат, – ответил я.

– Вот-вот, она самая!

Перейти на страницу:

Похожие книги

История Соединенных Штатов Америки
История Соединенных Штатов Америки

Андре Моруа, классик французской литературы XX века, автор знаменитых романизированных биографий Дюма, Бальзака, Виктора Гюго, Шелли и Байрона, считается подлинным мастером психологической прозы. Однако значительную часть наследия писателя составляют исторические сочинения.История возникновения Соединенных Штатов Америки представляла для писателя особый интерес, ведь она во многом уникальна. Могущественная держава с неоднозначной репутацией сформировалась на совершенно новой территории, коренные жители которой едва ли могли противостоять новым поселенцам. В борьбе колонистов из разных европейских стран возникло государство нового типа. Андре Моруа рассказывает о многих «развилках» на этом пути, о деятельности отцов-основателей, о важных связях с метрополиями Старого Света.Впервые на русском языке!

Андре Моруа , Андрэ Моруа

История / Зарубежная образовательная литература / Образование и наука
Кафедра и трон. Переписка императора Александра I и профессора Г. Ф. Паррота
Кафедра и трон. Переписка императора Александра I и профессора Г. Ф. Паррота

Профессор физики Дерптского университета Георг Фридрих Паррот (1767–1852) вошел в историю не только как ученый, но и как собеседник и друг императора Александра I. Их переписка – редкий пример доверительной дружбы между самодержавным правителем и его подданным, искренне заинтересованным в прогрессивных изменениях в стране. Александр I в ответ на безграничную преданность доверял Парроту важные государственные тайны – например, делился своим намерением даровать России конституцию или обсуждал участь обвиненного в измене Сперанского. Книга историка А. Андреева впервые вводит в научный оборот сохранившиеся тексты свыше 200 писем, переведенных на русский язык, с подробными комментариями и аннотированными указателями. Публикация писем предваряется большим историческим исследованием, посвященным отношениям Александра I и Паррота, а также полной загадок судьбе их переписки, которая позволяет по-новому взглянуть на историю России начала XIX века. Андрей Андреев – доктор исторических наук, профессор кафедры истории России XIX века – начала XX века исторического факультета МГУ имени М. В. Ломоносова.

Андрей Юрьевич Андреев

Публицистика / Зарубежная образовательная литература / Образование и наука