С помощью дерзкой аналогии японец Юкава постулировал существование тогда еще не найденных частиц, π-мезонов, или пионов, которые должны были «склеивать» нуклоны, играя роль ядерных сил. в послевоенное время пионы, наконец, были обнаружены и детально изучены на ускорителях нового поколения. Существуют пионы положительные, нейтральные и отрицательные, они образуют семейство (триплет) частиц, которые, если не считать заряда, почти тождественны; это семейство добавляется к семейству нуклонов (дублету), имеющему похожие свойства. Успех, пришедший с открытием пионов, побудил физиков заняться постройкой все более мощных ускорителей. Вначале они просто раздвигали мешавшие стены старых зданий, а потом дошли до проектирования таких ускорителей, как комплекс ЛЭП в ЦЕРНе, имеющий в окружности 30 км. За развитием ускорителей последовали открытия новых частиц; теперь уже вновь обнаруженная частица ни у кого не вызовет удивления, если, конечно, не будет наделена какими-то особо привлекательными свойствами.
Частицы и античастицы
Почти все эти частицы чрезвычайно нестабильны, за исключением, например, электрона, протона и фотона. Некоторые частицы распадаются за времена, очень большие по сравнению с атомными; так, время жизни свободного нейтрона больше четверти часа. Что же мы узнали, изучая эти частицы? Кроме всего прочего, была подтверждена теория Дирака, согласно которой всякая частица имеет свою античастицу с совпадающими и одновременно «противоположными» свойствами. Так, антипротон имеет массу и характеристики движения такие же, как у протона, но противоположный заряд. Антиэлектрон (называемый позитроном) положителен и вместе с антипротоном может образовать атом антиводорода. Наконец, фотон сам является своей античастицей, так же как и нейтральный пион. Можно вообразить целые галактики, состоящие из антивещества. Отличить их от нормальных галактик можно было бы, выполнив очень тонкие наблюдения, находящиеся пока за пределами экспериментальных возможностей наших астрофизиков. Развитая на основе представления о существовании позитрона квантовая электродинамика с исключительной точностью объясняет множество эффектов, имеющих важное философское значение и обнаруженных при излучении света атомами.
Рассмотрим теперь более подробно основные свойства так называемых «элементарных» частиц. Изучение этих свойств представляет, кроме всего, и заметный методический интерес, поскольку приводит к обсуждению самого процесса исследования исходных составляющих вещества.
Семейства частиц
Сколько элементарных частиц обнаружено до сих пор? Если судить по толщине кратких справочников, где описаны их свойства и которые имеют хождение среди физиков, то несколько сотен. Многие из этих частиц собраны в семейства, похожие на семейства нуклонов или пионов. Эти семейства играют роль, сравнимую с ролью периодической системы Менделеева, столь полезной в химии. Но именно такое сходство и наталкивает на мысль, что мы занимаемся классификацией объектов, похожих на атомы, а вовсе не элементарных. Так или иначе, но уже снова начались поиски действительно элементарных составляющих вещества. к 1963 г. выяснилось, что частицы следует объединять в более обширные семейства. Так, например, нуклоны вместе с Λ-частицей и с частицами Σ0 и Ξ0 должны были образовать сверхсемейство из восьми членов (октет); таким же образом пионы вошли в другой октет и т.д.
Древнегреческие философы приписывали атомам исключительно правильные и симметричные формы. Хотя реальные атомы весьма далеки от этого, мысль о том, что в физике понятие симметрии должно играть важную роль, осталась. Классификация частиц по семействам как раз и отражает существование какой-то симметрии в природе; рассмотрим ее.
SU-3-симметрия
Гейзенберг считал протон и нейтрон двумя состояниями одной и той же частицы – нуклона. Нуклон может перемещаться в пространстве, вращаться вокруг собственной оси, подобно волчку («спин»), а также принимать два различных образа – быть либо нейтроном, либо протоном. Подобные рассуждения применимы и к трем пионам. Согласно такой точке зрения, переход между протоном и нейтроном происходит в другом, особом, пространстве, для построения которого необходимо ввести дополнительную степень свободы и не ньютоновские измерения.